Metamath Proof Explorer


Theorem eulerpartlemo

Description: Lemma for eulerpart : O is the set of odd partitions of N . (Contributed by Thierry Arnoux, 10-Aug-2017)

Ref Expression
Hypotheses eulerpart.p P = f 0 | f -1 Fin k f k k = N
eulerpart.o O = g P | n g -1 ¬ 2 n
eulerpart.d D = g P | n g n 1
Assertion eulerpartlemo A O A P n A -1 ¬ 2 n

Proof

Step Hyp Ref Expression
1 eulerpart.p P = f 0 | f -1 Fin k f k k = N
2 eulerpart.o O = g P | n g -1 ¬ 2 n
3 eulerpart.d D = g P | n g n 1
4 cnveq g = A g -1 = A -1
5 4 imaeq1d g = A g -1 = A -1
6 5 raleqdv g = A n g -1 ¬ 2 n n A -1 ¬ 2 n
7 6 2 elrab2 A O A P n A -1 ¬ 2 n