Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpartlems.r |
|
2 |
|
eulerpartlems.s |
|
3 |
1 2
|
eulerpartlemsf |
|
4 |
3
|
ffvelrni |
|
5 |
|
nndiffz1 |
|
6 |
5
|
eleq2d |
|
7 |
4 6
|
syl |
|
8 |
7
|
pm5.32i |
|
9 |
|
simpr |
|
10 |
|
eldif |
|
11 |
9 10
|
sylib |
|
12 |
11
|
simpld |
|
13 |
1 2
|
eulerpartlemelr |
|
14 |
13
|
simpld |
|
15 |
14
|
ffvelrnda |
|
16 |
12 15
|
syldan |
|
17 |
|
simpl |
|
18 |
4
|
adantr |
|
19 |
11
|
simprd |
|
20 |
|
simpl |
|
21 |
|
nnuz |
|
22 |
20 21
|
eleqtrdi |
|
23 |
|
simpr |
|
24 |
23
|
nn0zd |
|
25 |
|
elfz5 |
|
26 |
22 24 25
|
syl2anc |
|
27 |
26
|
notbid |
|
28 |
23
|
nn0red |
|
29 |
20
|
nnred |
|
30 |
28 29
|
ltnled |
|
31 |
27 30
|
bitr4d |
|
32 |
31
|
biimpa |
|
33 |
12 18 19 32
|
syl21anc |
|
34 |
1 2
|
eulerpartlemsv1 |
|
35 |
|
fveq2 |
|
36 |
|
id |
|
37 |
35 36
|
oveq12d |
|
38 |
37
|
cbvsumv |
|
39 |
34 38
|
eqtr2di |
|
40 |
|
breq2 |
|
41 |
|
fveq2 |
|
42 |
41
|
breq2d |
|
43 |
40 42
|
anbi12d |
|
44 |
43
|
cbvrexvw |
|
45 |
4
|
adantr |
|
46 |
45
|
nn0red |
|
47 |
4
|
ad2antrr |
|
48 |
47
|
nn0red |
|
49 |
|
simpr |
|
50 |
49
|
adantr |
|
51 |
50
|
nnred |
|
52 |
|
1zzd |
|
53 |
14
|
ad2antrr |
|
54 |
|
simpr |
|
55 |
|
eqidd |
|
56 |
|
simpr |
|
57 |
56
|
fveq2d |
|
58 |
57 56
|
oveq12d |
|
59 |
|
simpr |
|
60 |
|
ffvelrn |
|
61 |
59
|
nnnn0d |
|
62 |
60 61
|
nn0mulcld |
|
63 |
55 58 59 62
|
fvmptd |
|
64 |
53 54 63
|
syl2anc |
|
65 |
14
|
adantr |
|
66 |
65
|
ffvelrnda |
|
67 |
54
|
nnnn0d |
|
68 |
66 67
|
nn0mulcld |
|
69 |
68
|
nn0red |
|
70 |
|
fveq2 |
|
71 |
|
id |
|
72 |
70 71
|
oveq12d |
|
73 |
72
|
cbvmptv |
|
74 |
68 73
|
fmptd |
|
75 |
|
nn0sscn |
|
76 |
|
fss |
|
77 |
74 75 76
|
sylancl |
|
78 |
|
nnex |
|
79 |
|
0nn0 |
|
80 |
|
eqid |
|
81 |
80
|
ffs2 |
|
82 |
78 79 81
|
mp3an12 |
|
83 |
77 82
|
syl |
|
84 |
|
frnnn0supp |
|
85 |
78 65 84
|
sylancr |
|
86 |
13
|
simprd |
|
87 |
86
|
adantr |
|
88 |
85 87
|
eqeltrd |
|
89 |
78
|
a1i |
|
90 |
79
|
a1i |
|
91 |
|
ffn |
|
92 |
|
simp3 |
|
93 |
92
|
oveq1d |
|
94 |
|
simp2 |
|
95 |
94
|
nncnd |
|
96 |
95
|
mul02d |
|
97 |
93 96
|
eqtrd |
|
98 |
73 89 90 91 97
|
suppss3 |
|
99 |
65 98
|
syl |
|
100 |
|
ssfi |
|
101 |
88 99 100
|
syl2anc |
|
102 |
83 101
|
eqeltrrd |
|
103 |
21 52 77 102
|
fsumcvg4 |
|
104 |
21 52 64 69 103
|
isumrecl |
|
105 |
104
|
adantr |
|
106 |
|
simprl |
|
107 |
14
|
ffvelrnda |
|
108 |
107
|
adantr |
|
109 |
108
|
nn0red |
|
110 |
109 51
|
remulcld |
|
111 |
50
|
nnnn0d |
|
112 |
111
|
nn0ge0d |
|
113 |
|
simprr |
|
114 |
|
elnnnn0b |
|
115 |
|
nnge1 |
|
116 |
114 115
|
sylbir |
|
117 |
108 113 116
|
syl2anc |
|
118 |
51 109 112 117
|
lemulge12d |
|
119 |
107
|
nn0cnd |
|
120 |
49
|
nncnd |
|
121 |
119 120
|
mulcld |
|
122 |
|
id |
|
123 |
41 122
|
oveq12d |
|
124 |
123
|
sumsn |
|
125 |
49 121 124
|
syl2anc |
|
126 |
|
snfi |
|
127 |
126
|
a1i |
|
128 |
49
|
snssd |
|
129 |
68
|
nn0ge0d |
|
130 |
21 52 127 128 64 69 129 103
|
isumless |
|
131 |
125 130
|
eqbrtrrd |
|
132 |
131
|
adantr |
|
133 |
51 110 105 118 132
|
letrd |
|
134 |
48 51 105 106 133
|
ltletrd |
|
135 |
134
|
r19.29an |
|
136 |
46 135
|
gtned |
|
137 |
136
|
ex |
|
138 |
44 137
|
syl5bi |
|
139 |
138
|
necon2bd |
|
140 |
39 139
|
mpd |
|
141 |
|
ralnex |
|
142 |
140 141
|
sylibr |
|
143 |
|
imnan |
|
144 |
143
|
ralbii |
|
145 |
142 144
|
sylibr |
|
146 |
145
|
r19.21bi |
|
147 |
146
|
imp |
|
148 |
17 12 33 147
|
syl21anc |
|
149 |
|
nn0re |
|
150 |
|
0red |
|
151 |
149 150
|
lenltd |
|
152 |
|
nn0le0eq0 |
|
153 |
151 152
|
bitr3d |
|
154 |
153
|
biimpa |
|
155 |
16 148 154
|
syl2anc |
|
156 |
8 155
|
sylbir |
|