Metamath Proof Explorer


Theorem eulerpartlems

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 6-Aug-2018) (Revised by Thierry Arnoux, 1-Sep-2019)

Ref Expression
Hypotheses eulerpartlems.r R = f | f -1 Fin
eulerpartlems.s S = f 0 R k f k k
Assertion eulerpartlems A 0 R t S A + 1 A t = 0

Proof

Step Hyp Ref Expression
1 eulerpartlems.r R = f | f -1 Fin
2 eulerpartlems.s S = f 0 R k f k k
3 1 2 eulerpartlemsf S : 0 R 0
4 3 ffvelrni A 0 R S A 0
5 nndiffz1 S A 0 1 S A = S A + 1
6 5 eleq2d S A 0 t 1 S A t S A + 1
7 4 6 syl A 0 R t 1 S A t S A + 1
8 7 pm5.32i A 0 R t 1 S A A 0 R t S A + 1
9 simpr A 0 R t 1 S A t 1 S A
10 eldif t 1 S A t ¬ t 1 S A
11 9 10 sylib A 0 R t 1 S A t ¬ t 1 S A
12 11 simpld A 0 R t 1 S A t
13 1 2 eulerpartlemelr A 0 R A : 0 A -1 Fin
14 13 simpld A 0 R A : 0
15 14 ffvelrnda A 0 R t A t 0
16 12 15 syldan A 0 R t 1 S A A t 0
17 simpl A 0 R t 1 S A A 0 R
18 4 adantr A 0 R t 1 S A S A 0
19 11 simprd A 0 R t 1 S A ¬ t 1 S A
20 simpl t S A 0 t
21 nnuz = 1
22 20 21 eleqtrdi t S A 0 t 1
23 simpr t S A 0 S A 0
24 23 nn0zd t S A 0 S A
25 elfz5 t 1 S A t 1 S A t S A
26 22 24 25 syl2anc t S A 0 t 1 S A t S A
27 26 notbid t S A 0 ¬ t 1 S A ¬ t S A
28 23 nn0red t S A 0 S A
29 20 nnred t S A 0 t
30 28 29 ltnled t S A 0 S A < t ¬ t S A
31 27 30 bitr4d t S A 0 ¬ t 1 S A S A < t
32 31 biimpa t S A 0 ¬ t 1 S A S A < t
33 12 18 19 32 syl21anc A 0 R t 1 S A S A < t
34 1 2 eulerpartlemsv1 A 0 R S A = k A k k
35 fveq2 k = t A k = A t
36 id k = t k = t
37 35 36 oveq12d k = t A k k = A t t
38 37 cbvsumv k A k k = t A t t
39 34 38 eqtr2di A 0 R t A t t = S A
40 breq2 t = l S A < t S A < l
41 fveq2 t = l A t = A l
42 41 breq2d t = l 0 < A t 0 < A l
43 40 42 anbi12d t = l S A < t 0 < A t S A < l 0 < A l
44 43 cbvrexvw t S A < t 0 < A t l S A < l 0 < A l
45 4 adantr A 0 R l S A < l 0 < A l S A 0
46 45 nn0red A 0 R l S A < l 0 < A l S A
47 4 ad2antrr A 0 R l S A < l 0 < A l S A 0
48 47 nn0red A 0 R l S A < l 0 < A l S A
49 simpr A 0 R l l
50 49 adantr A 0 R l S A < l 0 < A l l
51 50 nnred A 0 R l S A < l 0 < A l l
52 1zzd A 0 R l 1
53 14 ad2antrr A 0 R l t A : 0
54 simpr A 0 R l t t
55 eqidd A : 0 t m A m m = m A m m
56 simpr A : 0 t m = t m = t
57 56 fveq2d A : 0 t m = t A m = A t
58 57 56 oveq12d A : 0 t m = t A m m = A t t
59 simpr A : 0 t t
60 ffvelrn A : 0 t A t 0
61 59 nnnn0d A : 0 t t 0
62 60 61 nn0mulcld A : 0 t A t t 0
63 55 58 59 62 fvmptd A : 0 t m A m m t = A t t
64 53 54 63 syl2anc A 0 R l t m A m m t = A t t
65 14 adantr A 0 R l A : 0
66 65 ffvelrnda A 0 R l t A t 0
67 54 nnnn0d A 0 R l t t 0
68 66 67 nn0mulcld A 0 R l t A t t 0
69 68 nn0red A 0 R l t A t t
70 fveq2 m = t A m = A t
71 id m = t m = t
72 70 71 oveq12d m = t A m m = A t t
73 72 cbvmptv m A m m = t A t t
74 68 73 fmptd A 0 R l m A m m : 0
75 nn0sscn 0
76 fss m A m m : 0 0 m A m m :
77 74 75 76 sylancl A 0 R l m A m m :
78 nnex V
79 0nn0 0 0
80 eqid 0 = 0
81 80 ffs2 V 0 0 m A m m : m A m m supp 0 = m A m m -1 0
82 78 79 81 mp3an12 m A m m : m A m m supp 0 = m A m m -1 0
83 77 82 syl A 0 R l m A m m supp 0 = m A m m -1 0
84 frnnn0supp V A : 0 A supp 0 = A -1
85 78 65 84 sylancr A 0 R l A supp 0 = A -1
86 13 simprd A 0 R A -1 Fin
87 86 adantr A 0 R l A -1 Fin
88 85 87 eqeltrd A 0 R l A supp 0 Fin
89 78 a1i A : 0 V
90 79 a1i A : 0 0 0
91 ffn A : 0 A Fn
92 simp3 A : 0 t A t = 0 A t = 0
93 92 oveq1d A : 0 t A t = 0 A t t = 0 t
94 simp2 A : 0 t A t = 0 t
95 94 nncnd A : 0 t A t = 0 t
96 95 mul02d A : 0 t A t = 0 0 t = 0
97 93 96 eqtrd A : 0 t A t = 0 A t t = 0
98 73 89 90 91 97 suppss3 A : 0 m A m m supp 0 A supp 0
99 65 98 syl A 0 R l m A m m supp 0 A supp 0
100 ssfi A supp 0 Fin m A m m supp 0 A supp 0 m A m m supp 0 Fin
101 88 99 100 syl2anc A 0 R l m A m m supp 0 Fin
102 83 101 eqeltrrd A 0 R l m A m m -1 0 Fin
103 21 52 77 102 fsumcvg4 A 0 R l seq 1 + m A m m dom
104 21 52 64 69 103 isumrecl A 0 R l t A t t
105 104 adantr A 0 R l S A < l 0 < A l t A t t
106 simprl A 0 R l S A < l 0 < A l S A < l
107 14 ffvelrnda A 0 R l A l 0
108 107 adantr A 0 R l S A < l 0 < A l A l 0
109 108 nn0red A 0 R l S A < l 0 < A l A l
110 109 51 remulcld A 0 R l S A < l 0 < A l A l l
111 50 nnnn0d A 0 R l S A < l 0 < A l l 0
112 111 nn0ge0d A 0 R l S A < l 0 < A l 0 l
113 simprr A 0 R l S A < l 0 < A l 0 < A l
114 elnnnn0b A l A l 0 0 < A l
115 nnge1 A l 1 A l
116 114 115 sylbir A l 0 0 < A l 1 A l
117 108 113 116 syl2anc A 0 R l S A < l 0 < A l 1 A l
118 51 109 112 117 lemulge12d A 0 R l S A < l 0 < A l l A l l
119 107 nn0cnd A 0 R l A l
120 49 nncnd A 0 R l l
121 119 120 mulcld A 0 R l A l l
122 id t = l t = l
123 41 122 oveq12d t = l A t t = A l l
124 123 sumsn l A l l t l A t t = A l l
125 49 121 124 syl2anc A 0 R l t l A t t = A l l
126 snfi l Fin
127 126 a1i A 0 R l l Fin
128 49 snssd A 0 R l l
129 68 nn0ge0d A 0 R l t 0 A t t
130 21 52 127 128 64 69 129 103 isumless A 0 R l t l A t t t A t t
131 125 130 eqbrtrrd A 0 R l A l l t A t t
132 131 adantr A 0 R l S A < l 0 < A l A l l t A t t
133 51 110 105 118 132 letrd A 0 R l S A < l 0 < A l l t A t t
134 48 51 105 106 133 ltletrd A 0 R l S A < l 0 < A l S A < t A t t
135 134 r19.29an A 0 R l S A < l 0 < A l S A < t A t t
136 46 135 gtned A 0 R l S A < l 0 < A l t A t t S A
137 136 ex A 0 R l S A < l 0 < A l t A t t S A
138 44 137 syl5bi A 0 R t S A < t 0 < A t t A t t S A
139 138 necon2bd A 0 R t A t t = S A ¬ t S A < t 0 < A t
140 39 139 mpd A 0 R ¬ t S A < t 0 < A t
141 ralnex t ¬ S A < t 0 < A t ¬ t S A < t 0 < A t
142 140 141 sylibr A 0 R t ¬ S A < t 0 < A t
143 imnan S A < t ¬ 0 < A t ¬ S A < t 0 < A t
144 143 ralbii t S A < t ¬ 0 < A t t ¬ S A < t 0 < A t
145 142 144 sylibr A 0 R t S A < t ¬ 0 < A t
146 145 r19.21bi A 0 R t S A < t ¬ 0 < A t
147 146 imp A 0 R t S A < t ¬ 0 < A t
148 17 12 33 147 syl21anc A 0 R t 1 S A ¬ 0 < A t
149 nn0re A t 0 A t
150 0red A t 0 0
151 149 150 lenltd A t 0 A t 0 ¬ 0 < A t
152 nn0le0eq0 A t 0 A t 0 A t = 0
153 151 152 bitr3d A t 0 ¬ 0 < A t A t = 0
154 153 biimpa A t 0 ¬ 0 < A t A t = 0
155 16 148 154 syl2anc A 0 R t 1 S A A t = 0
156 8 155 sylbir A 0 R t S A + 1 A t = 0