Metamath Proof Explorer


Theorem eulerpartlemsf

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 8-Aug-2018)

Ref Expression
Hypotheses eulerpartlems.r R = f | f -1 Fin
eulerpartlems.s S = f 0 R k f k k
Assertion eulerpartlemsf S : 0 R 0

Proof

Step Hyp Ref Expression
1 eulerpartlems.r R = f | f -1 Fin
2 eulerpartlems.s S = f 0 R k f k k
3 simpl g = f k g = f
4 3 fveq1d g = f k g k = f k
5 4 oveq1d g = f k g k k = f k k
6 5 sumeq2dv g = f k g k k = k f k k
7 6 eleq1d g = f k g k k 0 k f k k 0
8 1 2 eulerpartlemsv2 g 0 R S g = k g -1 g k k
9 1 2 eulerpartlemsv1 g 0 R S g = k g k k
10 8 9 eqtr3d g 0 R k g -1 g k k = k g k k
11 1 2 eulerpartlemelr g 0 R g : 0 g -1 Fin
12 11 simprd g 0 R g -1 Fin
13 11 simpld g 0 R g : 0
14 13 adantr g 0 R k g -1 g : 0
15 cnvimass g -1 dom g
16 15 13 fssdm g 0 R g -1
17 16 sselda g 0 R k g -1 k
18 14 17 ffvelrnd g 0 R k g -1 g k 0
19 17 nnnn0d g 0 R k g -1 k 0
20 18 19 nn0mulcld g 0 R k g -1 g k k 0
21 12 20 fsumnn0cl g 0 R k g -1 g k k 0
22 10 21 eqeltrrd g 0 R k g k k 0
23 7 22 vtoclga f 0 R k f k k 0
24 2 23 fmpti S : 0 R 0