Metamath Proof Explorer


Theorem eulerpartlemsv1

Description: Lemma for eulerpart . Value of the sum of a partition A . (Contributed by Thierry Arnoux, 26-Aug-2018)

Ref Expression
Hypotheses eulerpartlems.r R = f | f -1 Fin
eulerpartlems.s S = f 0 R k f k k
Assertion eulerpartlemsv1 A 0 R S A = k A k k

Proof

Step Hyp Ref Expression
1 eulerpartlems.r R = f | f -1 Fin
2 eulerpartlems.s S = f 0 R k f k k
3 2 a1i A 0 R S = f 0 R k f k k
4 simplr A 0 R f = A k f = A
5 4 fveq1d A 0 R f = A k f k = A k
6 5 oveq1d A 0 R f = A k f k k = A k k
7 6 sumeq2dv A 0 R f = A k f k k = k A k k
8 id A 0 R A 0 R
9 sumex k A k k V
10 9 a1i A 0 R k A k k V
11 3 7 8 10 fvmptd A 0 R S A = k A k k