Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpartlems.r |
|
2 |
|
eulerpartlems.s |
|
3 |
1 2
|
eulerpartlemsv1 |
|
4 |
|
cnvimass |
|
5 |
1 2
|
eulerpartlemelr |
|
6 |
5
|
simpld |
|
7 |
4 6
|
fssdm |
|
8 |
6
|
adantr |
|
9 |
7
|
sselda |
|
10 |
8 9
|
ffvelrnd |
|
11 |
9
|
nnnn0d |
|
12 |
10 11
|
nn0mulcld |
|
13 |
12
|
nn0cnd |
|
14 |
|
simpr |
|
15 |
14
|
eldifad |
|
16 |
14
|
eldifbd |
|
17 |
6
|
adantr |
|
18 |
|
ffn |
|
19 |
|
elpreima |
|
20 |
17 18 19
|
3syl |
|
21 |
16 20
|
mtbid |
|
22 |
|
imnan |
|
23 |
21 22
|
sylibr |
|
24 |
15 23
|
mpd |
|
25 |
17 15
|
ffvelrnd |
|
26 |
|
elnn0 |
|
27 |
25 26
|
sylib |
|
28 |
|
orel1 |
|
29 |
24 27 28
|
sylc |
|
30 |
29
|
oveq1d |
|
31 |
15
|
nncnd |
|
32 |
31
|
mul02d |
|
33 |
30 32
|
eqtrd |
|
34 |
|
nnuz |
|
35 |
34
|
eqimssi |
|
36 |
35
|
a1i |
|
37 |
7 13 33 36
|
sumss |
|
38 |
3 37
|
eqtr4d |
|