Metamath Proof Explorer


Theorem eulerpartlemt

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 19-Sep-2017)

Ref Expression
Hypotheses eulerpart.p P = f 0 | f -1 Fin k f k k = N
eulerpart.o O = g P | n g -1 ¬ 2 n
eulerpart.d D = g P | n g n 1
eulerpart.j J = z | ¬ 2 z
eulerpart.f F = x J , y 0 2 y x
eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
eulerpart.m M = r H x y | x J y r x
eulerpart.r R = f | f -1 Fin
eulerpart.t T = f 0 | f -1 J
Assertion eulerpartlemt 0 J R = ran m T R m J

Proof

Step Hyp Ref Expression
1 eulerpart.p P = f 0 | f -1 Fin k f k k = N
2 eulerpart.o O = g P | n g -1 ¬ 2 n
3 eulerpart.d D = g P | n g n 1
4 eulerpart.j J = z | ¬ 2 z
5 eulerpart.f F = x J , y 0 2 y x
6 eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
7 eulerpart.m M = r H x y | x J y r x
8 eulerpart.r R = f | f -1 Fin
9 eulerpart.t T = f 0 | f -1 J
10 elmapi o 0 J o : J 0
11 10 adantr o 0 J o R o : J 0
12 c0ex 0 V
13 12 fconst J × 0 : J 0
14 13 a1i o 0 J o R J × 0 : J 0
15 disjdif J J =
16 15 a1i o 0 J o R J J =
17 fun o : J 0 J × 0 : J 0 J J = o J × 0 : J J 0 0
18 11 14 16 17 syl21anc o 0 J o R o J × 0 : J J 0 0
19 ssrab2 z | ¬ 2 z
20 4 19 eqsstri J
21 undif J J J =
22 20 21 mpbi J J =
23 0nn0 0 0
24 snssi 0 0 0 0
25 23 24 ax-mp 0 0
26 ssequn2 0 0 0 0 = 0
27 25 26 mpbi 0 0 = 0
28 22 27 feq23i o J × 0 : J J 0 0 o J × 0 : 0
29 18 28 sylib o 0 J o R o J × 0 : 0
30 nn0ex 0 V
31 nnex V
32 30 31 elmap o J × 0 0 o J × 0 : 0
33 29 32 sylibr o 0 J o R o J × 0 0
34 cnvun o J × 0 -1 = o -1 J × 0 -1
35 34 imaeq1i o J × 0 -1 = o -1 J × 0 -1
36 imaundir o -1 J × 0 -1 = o -1 J × 0 -1
37 35 36 eqtri o J × 0 -1 = o -1 J × 0 -1
38 vex o V
39 cnveq f = o f -1 = o -1
40 39 imaeq1d f = o f -1 = o -1
41 40 eleq1d f = o f -1 Fin o -1 Fin
42 38 41 8 elab2 o R o -1 Fin
43 42 biimpi o R o -1 Fin
44 43 adantl o 0 J o R o -1 Fin
45 cnvxp J × 0 -1 = 0 × J
46 45 dmeqi dom J × 0 -1 = dom 0 × J
47 2nn 2
48 2z 2
49 iddvds 2 2 2
50 48 49 ax-mp 2 2
51 breq2 z = 2 2 z 2 2
52 51 notbid z = 2 ¬ 2 z ¬ 2 2
53 52 4 elrab2 2 J 2 ¬ 2 2
54 53 simprbi 2 J ¬ 2 2
55 50 54 mt2 ¬ 2 J
56 eldif 2 J 2 ¬ 2 J
57 47 55 56 mpbir2an 2 J
58 ne0i 2 J J
59 dmxp J dom 0 × J = 0
60 57 58 59 mp2b dom 0 × J = 0
61 46 60 eqtri dom J × 0 -1 = 0
62 61 ineq1i dom J × 0 -1 = 0
63 incom 0 = 0
64 0nnn ¬ 0
65 disjsn 0 = ¬ 0
66 64 65 mpbir 0 =
67 62 63 66 3eqtr2i dom J × 0 -1 =
68 imadisj J × 0 -1 = dom J × 0 -1 =
69 67 68 mpbir J × 0 -1 =
70 0fin Fin
71 69 70 eqeltri J × 0 -1 Fin
72 unfi o -1 Fin J × 0 -1 Fin o -1 J × 0 -1 Fin
73 44 71 72 sylancl o 0 J o R o -1 J × 0 -1 Fin
74 37 73 eqeltrid o 0 J o R o J × 0 -1 Fin
75 cnvimass o -1 dom o
76 75 11 fssdm o 0 J o R o -1 J
77 0ss J
78 69 77 eqsstri J × 0 -1 J
79 78 a1i o 0 J o R J × 0 -1 J
80 76 79 unssd o 0 J o R o -1 J × 0 -1 J
81 37 80 eqsstrid o 0 J o R o J × 0 -1 J
82 1 2 3 4 5 6 7 8 9 eulerpartlemt0 o J × 0 T R o J × 0 0 o J × 0 -1 Fin o J × 0 -1 J
83 33 74 81 82 syl3anbrc o 0 J o R o J × 0 T R
84 resundir o J × 0 J = o J J × 0 J
85 ffn o : J 0 o Fn J
86 fnresdm o Fn J o J = o
87 disjdifr J J =
88 fnconstg 0 0 J × 0 Fn J
89 fnresdisj J × 0 Fn J J J = J × 0 J =
90 23 88 89 mp2b J J = J × 0 J =
91 87 90 mpbi J × 0 J =
92 91 a1i o Fn J J × 0 J =
93 86 92 uneq12d o Fn J o J J × 0 J = o
94 11 85 93 3syl o 0 J o R o J J × 0 J = o
95 un0 o = o
96 94 95 eqtrdi o 0 J o R o J J × 0 J = o
97 84 96 eqtr2id o 0 J o R o = o J × 0 J
98 reseq1 m = o J × 0 m J = o J × 0 J
99 98 rspceeqv o J × 0 T R o = o J × 0 J m T R o = m J
100 83 97 99 syl2anc o 0 J o R m T R o = m J
101 simpr m T R o = m J o = m J
102 simpl m T R o = m J m T R
103 1 2 3 4 5 6 7 8 9 eulerpartlemt0 m T R m 0 m -1 Fin m -1 J
104 102 103 sylib m T R o = m J m 0 m -1 Fin m -1 J
105 104 simp1d m T R o = m J m 0
106 30 31 elmap m 0 m : 0
107 105 106 sylib m T R o = m J m : 0
108 fssres m : 0 J m J : J 0
109 107 20 108 sylancl m T R o = m J m J : J 0
110 4 31 rabex2 J V
111 30 110 elmap m J 0 J m J : J 0
112 109 111 sylibr m T R o = m J m J 0 J
113 101 112 eqeltrd m T R o = m J o 0 J
114 ffun m : 0 Fun m
115 respreima Fun m m J -1 = m -1 J
116 107 114 115 3syl m T R o = m J m J -1 = m -1 J
117 104 simp2d m T R o = m J m -1 Fin
118 infi m -1 Fin m -1 J Fin
119 117 118 syl m T R o = m J m -1 J Fin
120 116 119 eqeltrd m T R o = m J m J -1 Fin
121 vex m V
122 121 resex m J V
123 cnveq f = m J f -1 = m J -1
124 123 imaeq1d f = m J f -1 = m J -1
125 124 eleq1d f = m J f -1 Fin m J -1 Fin
126 122 125 8 elab2 m J R m J -1 Fin
127 120 126 sylibr m T R o = m J m J R
128 101 127 eqeltrd m T R o = m J o R
129 113 128 jca m T R o = m J o 0 J o R
130 129 rexlimiva m T R o = m J o 0 J o R
131 100 130 impbii o 0 J o R m T R o = m J
132 131 abbii o | o 0 J o R = o | m T R o = m J
133 df-in 0 J R = o | o 0 J o R
134 eqid m T R m J = m T R m J
135 134 rnmpt ran m T R m J = o | m T R o = m J
136 132 133 135 3eqtr4i 0 J R = ran m T R m J