Metamath Proof Explorer


Theorem eulerpartlemt0

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 19-Sep-2017)

Ref Expression
Hypotheses eulerpart.p P = f 0 | f -1 Fin k f k k = N
eulerpart.o O = g P | n g -1 ¬ 2 n
eulerpart.d D = g P | n g n 1
eulerpart.j J = z | ¬ 2 z
eulerpart.f F = x J , y 0 2 y x
eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
eulerpart.m M = r H x y | x J y r x
eulerpart.r R = f | f -1 Fin
eulerpart.t T = f 0 | f -1 J
Assertion eulerpartlemt0 A T R A 0 A -1 Fin A -1 J

Proof

Step Hyp Ref Expression
1 eulerpart.p P = f 0 | f -1 Fin k f k k = N
2 eulerpart.o O = g P | n g -1 ¬ 2 n
3 eulerpart.d D = g P | n g n 1
4 eulerpart.j J = z | ¬ 2 z
5 eulerpart.f F = x J , y 0 2 y x
6 eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
7 eulerpart.m M = r H x y | x J y r x
8 eulerpart.r R = f | f -1 Fin
9 eulerpart.t T = f 0 | f -1 J
10 cnveq f = A f -1 = A -1
11 10 imaeq1d f = A f -1 = A -1
12 11 sseq1d f = A f -1 J A -1 J
13 12 9 elrab2 A T A 0 A -1 J
14 11 eleq1d f = A f -1 Fin A -1 Fin
15 14 8 elab4g A R A V A -1 Fin
16 13 15 anbi12i A T A R A 0 A -1 J A V A -1 Fin
17 elin A T R A T A R
18 elex A 0 A V
19 18 pm4.71i A 0 A 0 A V
20 19 anbi1i A 0 A -1 Fin A -1 J A 0 A V A -1 Fin A -1 J
21 3anass A 0 A -1 Fin A -1 J A 0 A -1 Fin A -1 J
22 an42 A 0 A -1 J A V A -1 Fin A 0 A V A -1 Fin A -1 J
23 20 21 22 3bitr4i A 0 A -1 Fin A -1 J A 0 A -1 J A V A -1 Fin
24 16 17 23 3bitr4i A T R A 0 A -1 Fin A -1 J