Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpart.p |
|
2 |
1
|
eulerpartleme |
|
3 |
|
cnvimass |
|
4 |
|
fdm |
|
5 |
3 4
|
sseqtrid |
|
6 |
|
simpl |
|
7 |
5
|
sselda |
|
8 |
6 7
|
ffvelrnd |
|
9 |
7
|
nnnn0d |
|
10 |
8 9
|
nn0mulcld |
|
11 |
10
|
nn0cnd |
|
12 |
|
simpr |
|
13 |
12
|
eldifad |
|
14 |
12
|
eldifbd |
|
15 |
|
simpl |
|
16 |
|
ffn |
|
17 |
|
elpreima |
|
18 |
15 16 17
|
3syl |
|
19 |
14 18
|
mtbid |
|
20 |
|
imnan |
|
21 |
19 20
|
sylibr |
|
22 |
13 21
|
mpd |
|
23 |
15 13
|
ffvelrnd |
|
24 |
|
elnn0 |
|
25 |
23 24
|
sylib |
|
26 |
|
orel1 |
|
27 |
22 25 26
|
sylc |
|
28 |
27
|
oveq1d |
|
29 |
13
|
nncnd |
|
30 |
29
|
mul02d |
|
31 |
28 30
|
eqtrd |
|
32 |
|
nnuz |
|
33 |
32
|
eqimssi |
|
34 |
33
|
a1i |
|
35 |
5 11 31 34
|
sumss |
|
36 |
35
|
eqcomd |
|
37 |
36
|
adantr |
|
38 |
37
|
eqeq1d |
|
39 |
38
|
pm5.32i |
|
40 |
|
df-3an |
|
41 |
|
df-3an |
|
42 |
39 40 41
|
3bitr4i |
|
43 |
2 42
|
bitri |
|