Metamath Proof Explorer


Theorem eulerpartlemv

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 19-Aug-2018)

Ref Expression
Hypothesis eulerpart.p P = f 0 | f -1 Fin k f k k = N
Assertion eulerpartlemv A P A : 0 A -1 Fin k A -1 A k k = N

Proof

Step Hyp Ref Expression
1 eulerpart.p P = f 0 | f -1 Fin k f k k = N
2 1 eulerpartleme A P A : 0 A -1 Fin k A k k = N
3 cnvimass A -1 dom A
4 fdm A : 0 dom A =
5 3 4 sseqtrid A : 0 A -1
6 simpl A : 0 k A -1 A : 0
7 5 sselda A : 0 k A -1 k
8 6 7 ffvelrnd A : 0 k A -1 A k 0
9 7 nnnn0d A : 0 k A -1 k 0
10 8 9 nn0mulcld A : 0 k A -1 A k k 0
11 10 nn0cnd A : 0 k A -1 A k k
12 simpr A : 0 k A -1 k A -1
13 12 eldifad A : 0 k A -1 k
14 12 eldifbd A : 0 k A -1 ¬ k A -1
15 simpl A : 0 k A -1 A : 0
16 ffn A : 0 A Fn
17 elpreima A Fn k A -1 k A k
18 15 16 17 3syl A : 0 k A -1 k A -1 k A k
19 14 18 mtbid A : 0 k A -1 ¬ k A k
20 imnan k ¬ A k ¬ k A k
21 19 20 sylibr A : 0 k A -1 k ¬ A k
22 13 21 mpd A : 0 k A -1 ¬ A k
23 15 13 ffvelrnd A : 0 k A -1 A k 0
24 elnn0 A k 0 A k A k = 0
25 23 24 sylib A : 0 k A -1 A k A k = 0
26 orel1 ¬ A k A k A k = 0 A k = 0
27 22 25 26 sylc A : 0 k A -1 A k = 0
28 27 oveq1d A : 0 k A -1 A k k = 0 k
29 13 nncnd A : 0 k A -1 k
30 29 mul02d A : 0 k A -1 0 k = 0
31 28 30 eqtrd A : 0 k A -1 A k k = 0
32 nnuz = 1
33 32 eqimssi 1
34 33 a1i A : 0 1
35 5 11 31 34 sumss A : 0 k A -1 A k k = k A k k
36 35 eqcomd A : 0 k A k k = k A -1 A k k
37 36 adantr A : 0 A -1 Fin k A k k = k A -1 A k k
38 37 eqeq1d A : 0 A -1 Fin k A k k = N k A -1 A k k = N
39 38 pm5.32i A : 0 A -1 Fin k A k k = N A : 0 A -1 Fin k A -1 A k k = N
40 df-3an A : 0 A -1 Fin k A k k = N A : 0 A -1 Fin k A k k = N
41 df-3an A : 0 A -1 Fin k A -1 A k k = N A : 0 A -1 Fin k A -1 A k k = N
42 39 40 41 3bitr4i A : 0 A -1 Fin k A k k = N A : 0 A -1 Fin k A -1 A k k = N
43 2 42 bitri A P A : 0 A -1 Fin k A -1 A k k = N