Metamath Proof Explorer


Theorem eulerpath

Description: A pseudograph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 26-Feb-2021)

Ref Expression
Hypothesis eulerpathpr.v V = Vtx G
Assertion eulerpath G UPGraph EulerPaths G x V | ¬ 2 VtxDeg G x 0 2

Proof

Step Hyp Ref Expression
1 eulerpathpr.v V = Vtx G
2 releupth Rel EulerPaths G
3 reldm0 Rel EulerPaths G EulerPaths G = dom EulerPaths G =
4 2 3 ax-mp EulerPaths G = dom EulerPaths G =
5 4 necon3bii EulerPaths G dom EulerPaths G
6 n0 dom EulerPaths G f f dom EulerPaths G
7 5 6 bitri EulerPaths G f f dom EulerPaths G
8 vex f V
9 8 eldm f dom EulerPaths G p f EulerPaths G p
10 1 eulerpathpr G UPGraph f EulerPaths G p x V | ¬ 2 VtxDeg G x 0 2
11 10 expcom f EulerPaths G p G UPGraph x V | ¬ 2 VtxDeg G x 0 2
12 11 exlimiv p f EulerPaths G p G UPGraph x V | ¬ 2 VtxDeg G x 0 2
13 9 12 sylbi f dom EulerPaths G G UPGraph x V | ¬ 2 VtxDeg G x 0 2
14 13 exlimiv f f dom EulerPaths G G UPGraph x V | ¬ 2 VtxDeg G x 0 2
15 7 14 sylbi EulerPaths G G UPGraph x V | ¬ 2 VtxDeg G x 0 2
16 15 impcom G UPGraph EulerPaths G x V | ¬ 2 VtxDeg G x 0 2