Step |
Hyp |
Ref |
Expression |
1 |
|
eulerpathpr.v |
|
2 |
|
eqid |
|
3 |
|
simpl |
|
4 |
|
upgruhgr |
|
5 |
2
|
uhgrfun |
|
6 |
4 5
|
syl |
|
7 |
6
|
adantr |
|
8 |
|
simpr |
|
9 |
1 2 3 7 8
|
eupth2 |
|
10 |
9
|
fveq2d |
|
11 |
|
fveq2 |
|
12 |
11
|
eleq1d |
|
13 |
|
fveq2 |
|
14 |
13
|
eleq1d |
|
15 |
|
hash0 |
|
16 |
|
c0ex |
|
17 |
16
|
prid1 |
|
18 |
15 17
|
eqeltri |
|
19 |
18
|
a1i |
|
20 |
|
simpr |
|
21 |
20
|
neqned |
|
22 |
|
fvex |
|
23 |
|
fvex |
|
24 |
|
hashprg |
|
25 |
22 23 24
|
mp2an |
|
26 |
21 25
|
sylib |
|
27 |
|
2ex |
|
28 |
27
|
prid2 |
|
29 |
26 28
|
eqeltrdi |
|
30 |
12 14 19 29
|
ifbothda |
|
31 |
10 30
|
eqeltrd |
|