| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerpathpr.v |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 |  | simpl |  | 
						
							| 4 |  | upgruhgr |  | 
						
							| 5 | 2 | uhgrfun |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 |  | simpr |  | 
						
							| 9 | 1 2 3 7 8 | eupth2 |  | 
						
							| 10 | 9 | fveq2d |  | 
						
							| 11 |  | fveq2 |  | 
						
							| 12 | 11 | eleq1d |  | 
						
							| 13 |  | fveq2 |  | 
						
							| 14 | 13 | eleq1d |  | 
						
							| 15 |  | hash0 |  | 
						
							| 16 |  | c0ex |  | 
						
							| 17 | 16 | prid1 |  | 
						
							| 18 | 15 17 | eqeltri |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 20 | neqned |  | 
						
							| 22 |  | fvex |  | 
						
							| 23 |  | fvex |  | 
						
							| 24 |  | hashprg |  | 
						
							| 25 | 22 23 24 | mp2an |  | 
						
							| 26 | 21 25 | sylib |  | 
						
							| 27 |  | 2ex |  | 
						
							| 28 | 27 | prid2 |  | 
						
							| 29 | 26 28 | eqeltrdi |  | 
						
							| 30 | 12 14 19 29 | ifbothda |  | 
						
							| 31 | 10 30 | eqeltrd |  |