| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phicl |  | 
						
							| 2 | 1 | nnnn0d |  | 
						
							| 3 |  | hashfz1 |  | 
						
							| 4 | 2 3 | syl |  | 
						
							| 5 |  | dfphi2 |  | 
						
							| 6 | 4 5 | eqtrd |  | 
						
							| 7 | 6 | 3ad2ant1 |  | 
						
							| 8 |  | fzfi |  | 
						
							| 9 |  | fzofi |  | 
						
							| 10 |  | ssrab2 |  | 
						
							| 11 |  | ssfi |  | 
						
							| 12 | 9 10 11 | mp2an |  | 
						
							| 13 |  | hashen |  | 
						
							| 14 | 8 12 13 | mp2an |  | 
						
							| 15 | 7 14 | sylib |  | 
						
							| 16 |  | bren |  | 
						
							| 17 | 15 16 | sylib |  | 
						
							| 18 |  | simpl |  | 
						
							| 19 |  | oveq1 |  | 
						
							| 20 | 19 | eqeq1d |  | 
						
							| 21 | 20 | cbvrabv |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 |  | fveq2 |  | 
						
							| 25 | 24 | oveq2d |  | 
						
							| 26 | 25 | oveq1d |  | 
						
							| 27 | 26 | cbvmptv |  | 
						
							| 28 | 18 21 22 23 27 | eulerthlem2 |  | 
						
							| 29 | 17 28 | exlimddv |  |