Step |
Hyp |
Ref |
Expression |
1 |
|
eulerth.1 |
|
2 |
|
eulerth.2 |
|
3 |
|
eulerth.3 |
|
4 |
|
eulerth.4 |
|
5 |
|
eulerth.5 |
|
6 |
1
|
simp2d |
|
7 |
6
|
adantr |
|
8 |
|
f1of |
|
9 |
4 8
|
syl |
|
10 |
9
|
ffvelrnda |
|
11 |
|
oveq1 |
|
12 |
11
|
eqeq1d |
|
13 |
12 2
|
elrab2 |
|
14 |
10 13
|
sylib |
|
15 |
14
|
simpld |
|
16 |
|
elfzoelz |
|
17 |
15 16
|
syl |
|
18 |
7 17
|
zmulcld |
|
19 |
1
|
simp1d |
|
20 |
19
|
adantr |
|
21 |
|
zmodfzo |
|
22 |
18 20 21
|
syl2anc |
|
23 |
|
modgcd |
|
24 |
18 20 23
|
syl2anc |
|
25 |
19
|
nnzd |
|
26 |
25
|
adantr |
|
27 |
18 26
|
gcdcomd |
|
28 |
25 6
|
gcdcomd |
|
29 |
1
|
simp3d |
|
30 |
28 29
|
eqtrd |
|
31 |
30
|
adantr |
|
32 |
26 17
|
gcdcomd |
|
33 |
14
|
simprd |
|
34 |
32 33
|
eqtrd |
|
35 |
|
rpmul |
|
36 |
26 7 17 35
|
syl3anc |
|
37 |
31 34 36
|
mp2and |
|
38 |
24 27 37
|
3eqtrd |
|
39 |
|
oveq1 |
|
40 |
39
|
eqeq1d |
|
41 |
40 2
|
elrab2 |
|
42 |
22 38 41
|
sylanbrc |
|
43 |
42 5
|
fmptd |
|