| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerth.1 |  | 
						
							| 2 |  | eulerth.2 |  | 
						
							| 3 |  | eulerth.3 |  | 
						
							| 4 |  | eulerth.4 |  | 
						
							| 5 |  | eulerth.5 |  | 
						
							| 6 | 1 | simp2d |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 |  | f1of |  | 
						
							| 9 | 4 8 | syl |  | 
						
							| 10 | 9 | ffvelcdmda |  | 
						
							| 11 |  | oveq1 |  | 
						
							| 12 | 11 | eqeq1d |  | 
						
							| 13 | 12 2 | elrab2 |  | 
						
							| 14 | 10 13 | sylib |  | 
						
							| 15 | 14 | simpld |  | 
						
							| 16 |  | elfzoelz |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 7 17 | zmulcld |  | 
						
							| 19 | 1 | simp1d |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 |  | zmodfzo |  | 
						
							| 22 | 18 20 21 | syl2anc |  | 
						
							| 23 |  | modgcd |  | 
						
							| 24 | 18 20 23 | syl2anc |  | 
						
							| 25 | 19 | nnzd |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 18 26 | gcdcomd |  | 
						
							| 28 | 25 6 | gcdcomd |  | 
						
							| 29 | 1 | simp3d |  | 
						
							| 30 | 28 29 | eqtrd |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 26 17 | gcdcomd |  | 
						
							| 33 | 14 | simprd |  | 
						
							| 34 | 32 33 | eqtrd |  | 
						
							| 35 |  | rpmul |  | 
						
							| 36 | 26 7 17 35 | syl3anc |  | 
						
							| 37 | 31 34 36 | mp2and |  | 
						
							| 38 | 24 27 37 | 3eqtrd |  | 
						
							| 39 |  | oveq1 |  | 
						
							| 40 | 39 | eqeq1d |  | 
						
							| 41 | 40 2 | elrab2 |  | 
						
							| 42 | 22 38 41 | sylanbrc |  | 
						
							| 43 | 42 5 | fmptd |  |