Metamath Proof Explorer


Theorem eunex

Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010) (Proof shortened by BJ, 2-Jan-2023)

Ref Expression
Assertion eunex ∃! x φ x ¬ φ

Proof

Step Hyp Ref Expression
1 dtru ¬ x x = y
2 albi x φ x = y x φ x x = y
3 1 2 mtbiri x φ x = y ¬ x φ
4 3 exlimiv y x φ x = y ¬ x φ
5 eu6 ∃! x φ y x φ x = y
6 exnal x ¬ φ ¬ x φ
7 4 5 6 3imtr4i ∃! x φ x ¬ φ