Metamath Proof Explorer


Theorem euor

Description: Introduce a disjunct into a unique existential quantifier. For a version requiring disjoint variables, but fewer axioms, see euorv . (Contributed by NM, 21-Oct-2005)

Ref Expression
Hypothesis euor.nf x φ
Assertion euor ¬ φ ∃! x ψ ∃! x φ ψ

Proof

Step Hyp Ref Expression
1 euor.nf x φ
2 1 nfn x ¬ φ
3 biorf ¬ φ ψ φ ψ
4 2 3 eubid ¬ φ ∃! x ψ ∃! x φ ψ
5 4 biimpa ¬ φ ∃! x ψ ∃! x φ ψ