Metamath Proof Explorer


Theorem euor2

Description: Introduce or eliminate a disjunct in a unique existential quantifier. (Contributed by NM, 21-Oct-2005) (Proof shortened by Andrew Salmon, 9-Jul-2011) (Proof shortened by Wolf Lammen, 27-Dec-2018)

Ref Expression
Assertion euor2 ¬ x φ ∃! x φ ψ ∃! x ψ

Proof

Step Hyp Ref Expression
1 nfe1 x x φ
2 1 nfn x ¬ x φ
3 19.8a φ x φ
4 biorf ¬ φ ψ φ ψ
5 4 bicomd ¬ φ φ ψ ψ
6 3 5 nsyl5 ¬ x φ φ ψ ψ
7 2 6 eubid ¬ x φ ∃! x φ ψ ∃! x ψ