Metamath Proof Explorer


Theorem euorv

Description: Introduce a disjunct into a unique existential quantifier. Version of euor requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2023)

Ref Expression
Assertion euorv ¬ φ ∃! x ψ ∃! x φ ψ

Proof

Step Hyp Ref Expression
1 biorf ¬ φ ψ φ ψ
2 1 eubidv ¬ φ ∃! x ψ ∃! x φ ψ
3 2 biimpa ¬ φ ∃! x ψ ∃! x φ ψ