Step |
Hyp |
Ref |
Expression |
1 |
|
euotd.1 |
|
2 |
|
euotd.2 |
|
3 |
|
euotd.3 |
|
4 |
|
euotd.4 |
|
5 |
4
|
biimpa |
|
6 |
|
vex |
|
7 |
|
vex |
|
8 |
|
vex |
|
9 |
6 7 8
|
otth |
|
10 |
5 9
|
sylibr |
|
11 |
10
|
eqeq2d |
|
12 |
11
|
biimpd |
|
13 |
12
|
impancom |
|
14 |
13
|
expimpd |
|
15 |
14
|
exlimdv |
|
16 |
15
|
exlimdvv |
|
17 |
|
tru |
|
18 |
2
|
adantr |
|
19 |
3
|
ad2antrr |
|
20 |
|
simpr |
|
21 |
20 9
|
sylibr |
|
22 |
21
|
eqcomd |
|
23 |
4
|
biimpar |
|
24 |
22 23
|
jca |
|
25 |
|
trud |
|
26 |
24 25
|
2thd |
|
27 |
26
|
3anassrs |
|
28 |
19 27
|
sbcied |
|
29 |
18 28
|
sbcied |
|
30 |
1 29
|
sbcied |
|
31 |
17 30
|
mpbiri |
|
32 |
31
|
spesbcd |
|
33 |
|
nfcv |
|
34 |
|
nfsbc1v |
|
35 |
34
|
nfex |
|
36 |
|
sbceq1a |
|
37 |
36
|
exbidv |
|
38 |
33 35 37
|
spcegf |
|
39 |
2 32 38
|
sylc |
|
40 |
|
nfcv |
|
41 |
|
nfsbc1v |
|
42 |
41
|
nfex |
|
43 |
42
|
nfex |
|
44 |
|
sbceq1a |
|
45 |
44
|
2exbidv |
|
46 |
40 43 45
|
spcegf |
|
47 |
3 39 46
|
sylc |
|
48 |
|
excom13 |
|
49 |
47 48
|
sylib |
|
50 |
|
eqeq1 |
|
51 |
50
|
anbi1d |
|
52 |
51
|
3exbidv |
|
53 |
49 52
|
syl5ibrcom |
|
54 |
16 53
|
impbid |
|
55 |
54
|
alrimiv |
|
56 |
|
otex |
|
57 |
|
eqeq2 |
|
58 |
57
|
bibi2d |
|
59 |
58
|
albidv |
|
60 |
56 59
|
spcev |
|
61 |
55 60
|
syl |
|
62 |
|
eu6 |
|
63 |
61 62
|
sylibr |
|