| Step |
Hyp |
Ref |
Expression |
| 1 |
|
euotd.1 |
|
| 2 |
|
euotd.2 |
|
| 3 |
|
euotd.3 |
|
| 4 |
|
euotd.4 |
|
| 5 |
4
|
biimpa |
|
| 6 |
|
vex |
|
| 7 |
|
vex |
|
| 8 |
|
vex |
|
| 9 |
6 7 8
|
otth |
|
| 10 |
5 9
|
sylibr |
|
| 11 |
10
|
eqeq2d |
|
| 12 |
11
|
biimpd |
|
| 13 |
12
|
impancom |
|
| 14 |
13
|
expimpd |
|
| 15 |
14
|
exlimdv |
|
| 16 |
15
|
exlimdvv |
|
| 17 |
|
tru |
|
| 18 |
2
|
adantr |
|
| 19 |
3
|
ad2antrr |
|
| 20 |
|
simpr |
|
| 21 |
20 9
|
sylibr |
|
| 22 |
21
|
eqcomd |
|
| 23 |
4
|
biimpar |
|
| 24 |
22 23
|
jca |
|
| 25 |
|
trud |
|
| 26 |
24 25
|
2thd |
|
| 27 |
26
|
3anassrs |
|
| 28 |
19 27
|
sbcied |
|
| 29 |
18 28
|
sbcied |
|
| 30 |
1 29
|
sbcied |
|
| 31 |
17 30
|
mpbiri |
|
| 32 |
31
|
spesbcd |
|
| 33 |
|
nfcv |
|
| 34 |
|
nfsbc1v |
|
| 35 |
34
|
nfex |
|
| 36 |
|
sbceq1a |
|
| 37 |
36
|
exbidv |
|
| 38 |
33 35 37
|
spcegf |
|
| 39 |
2 32 38
|
sylc |
|
| 40 |
|
nfcv |
|
| 41 |
|
nfsbc1v |
|
| 42 |
41
|
nfex |
|
| 43 |
42
|
nfex |
|
| 44 |
|
sbceq1a |
|
| 45 |
44
|
2exbidv |
|
| 46 |
40 43 45
|
spcegf |
|
| 47 |
3 39 46
|
sylc |
|
| 48 |
|
excom13 |
|
| 49 |
47 48
|
sylib |
|
| 50 |
|
eqeq1 |
|
| 51 |
50
|
anbi1d |
|
| 52 |
51
|
3exbidv |
|
| 53 |
49 52
|
syl5ibrcom |
|
| 54 |
16 53
|
impbid |
|
| 55 |
54
|
alrimiv |
|
| 56 |
|
otex |
|
| 57 |
|
eqeq2 |
|
| 58 |
57
|
bibi2d |
|
| 59 |
58
|
albidv |
|
| 60 |
56 59
|
spcev |
|
| 61 |
55 60
|
syl |
|
| 62 |
|
eu6 |
|
| 63 |
61 62
|
sylibr |
|