Metamath Proof Explorer


Theorem eupicka

Description: Version of eupick with closed formulas. (Contributed by NM, 6-Sep-2008)

Ref Expression
Assertion eupicka ∃! x φ x φ ψ x φ ψ

Proof

Step Hyp Ref Expression
1 nfeu1 x ∃! x φ
2 nfe1 x x φ ψ
3 1 2 nfan x ∃! x φ x φ ψ
4 eupick ∃! x φ x φ ψ φ ψ
5 3 4 alrimi ∃! x φ x φ ψ x φ ψ