Metamath Proof Explorer


Theorem eupickb

Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994) (Proof shortened by Wolf Lammen, 27-Dec-2018)

Ref Expression
Assertion eupickb ∃! x φ ∃! x ψ x φ ψ φ ψ

Proof

Step Hyp Ref Expression
1 eupick ∃! x φ x φ ψ φ ψ
2 1 3adant2 ∃! x φ ∃! x ψ x φ ψ φ ψ
3 exancom x φ ψ x ψ φ
4 eupick ∃! x ψ x ψ φ ψ φ
5 3 4 sylan2b ∃! x ψ x φ ψ ψ φ
6 5 3adant1 ∃! x φ ∃! x ψ x φ ψ ψ φ
7 2 6 impbid ∃! x φ ∃! x ψ x φ ψ φ ψ