Metamath Proof Explorer


Theorem eupickbi

Description: Theorem *14.26 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011) (Proof shortened by Wolf Lammen, 27-Dec-2018)

Ref Expression
Assertion eupickbi ∃! x φ x φ ψ x φ ψ

Proof

Step Hyp Ref Expression
1 eupicka ∃! x φ x φ ψ x φ ψ
2 1 ex ∃! x φ x φ ψ x φ ψ
3 euex ∃! x φ x φ
4 exintr x φ ψ x φ x φ ψ
5 3 4 syl5com ∃! x φ x φ ψ x φ ψ
6 2 5 impbid ∃! x φ x φ ψ x φ ψ