Step |
Hyp |
Ref |
Expression |
1 |
|
eupthp1.v |
|
2 |
|
eupthp1.i |
|
3 |
|
eupthp1.f |
|
4 |
|
eupthp1.a |
|
5 |
|
eupthp1.b |
|
6 |
|
eupthp1.c |
|
7 |
|
eupthp1.d |
|
8 |
|
eupthp1.p |
|
9 |
|
eupthp1.n |
|
10 |
|
eupthp1.e |
|
11 |
|
eupthp1.x |
|
12 |
|
eupthp1.u |
|
13 |
|
eupthp1.h |
|
14 |
|
eupthp1.q |
|
15 |
|
eupthp1.s |
|
16 |
|
eupthp1.l |
|
17 |
|
eupth2eucrct.c |
|
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
eupthp1 |
|
19 |
|
simpr |
|
20 |
|
eupthistrl |
|
21 |
20
|
adantl |
|
22 |
|
fveq2 |
|
23 |
|
fveq2 |
|
24 |
22 23
|
eqeq12d |
|
25 |
|
eupthiswlk |
|
26 |
8 25
|
syl |
|
27 |
12
|
a1i |
|
28 |
15
|
a1i |
|
29 |
1 2 3 4 5 6 7 26 9 10 11 27 13 14 28
|
wlkp1lem5 |
|
30 |
2
|
wlkf |
|
31 |
|
lencl |
|
32 |
9
|
eleq1i |
|
33 |
|
0elfz |
|
34 |
32 33
|
sylbir |
|
35 |
31 34
|
syl |
|
36 |
8 25 30 35
|
4syl |
|
37 |
24 29 36
|
rspcdva |
|
38 |
37
|
adantr |
|
39 |
17
|
eqcomd |
|
40 |
39
|
adantr |
|
41 |
14
|
a1i |
|
42 |
13
|
fveq2i |
|
43 |
42
|
a1i |
|
44 |
|
wrdfin |
|
45 |
8 25 30 44
|
4syl |
|
46 |
45
|
adantr |
|
47 |
|
snfi |
|
48 |
47
|
a1i |
|
49 |
|
wrddm |
|
50 |
8 25 30 49
|
4syl |
|
51 |
|
fzonel |
|
52 |
51
|
a1i |
|
53 |
9
|
eleq1i |
|
54 |
52 53
|
sylnibr |
|
55 |
|
eleq2 |
|
56 |
55
|
notbid |
|
57 |
54 56
|
syl5ibrcom |
|
58 |
9
|
fvexi |
|
59 |
58
|
a1i |
|
60 |
59 5
|
opeldmd |
|
61 |
57 60
|
nsyld |
|
62 |
50 61
|
mpd |
|
63 |
62
|
adantr |
|
64 |
|
disjsn |
|
65 |
63 64
|
sylibr |
|
66 |
|
hashun |
|
67 |
46 48 65 66
|
syl3anc |
|
68 |
9
|
eqcomi |
|
69 |
|
opex |
|
70 |
|
hashsng |
|
71 |
69 70
|
ax-mp |
|
72 |
68 71
|
oveq12i |
|
73 |
72
|
a1i |
|
74 |
43 67 73
|
3eqtrd |
|
75 |
41 74
|
fveq12d |
|
76 |
|
ovexd |
|
77 |
1 2 3 4 5 6 7 26 9
|
wlkp1lem1 |
|
78 |
76 6 77
|
3jca |
|
79 |
78
|
adantr |
|
80 |
|
fsnunfv |
|
81 |
79 80
|
syl |
|
82 |
75 81
|
eqtr2d |
|
83 |
38 40 82
|
3eqtrd |
|
84 |
|
iscrct |
|
85 |
21 83 84
|
sylanbrc |
|
86 |
19 85
|
jca |
|
87 |
18 86
|
mpdan |
|