Metamath Proof Explorer


Theorem eupth2lem1

Description: Lemma for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015)

Ref Expression
Assertion eupth2lem1 U V U if A = B A B A B U = A U = B

Proof

Step Hyp Ref Expression
1 eleq2 = if A = B A B U U if A = B A B
2 1 bibi1d = if A = B A B U A B U = A U = B U if A = B A B A B U = A U = B
3 eleq2 A B = if A = B A B U A B U if A = B A B
4 3 bibi1d A B = if A = B A B U A B A B U = A U = B U if A = B A B A B U = A U = B
5 noel ¬ U
6 5 a1i U V A = B ¬ U
7 simpl A B U = A U = B A B
8 7 neneqd A B U = A U = B ¬ A = B
9 simpr U V A = B A = B
10 8 9 nsyl3 U V A = B ¬ A B U = A U = B
11 6 10 2falsed U V A = B U A B U = A U = B
12 elprg U V U A B U = A U = B
13 df-ne A B ¬ A = B
14 ibar A B U = A U = B A B U = A U = B
15 13 14 sylbir ¬ A = B U = A U = B A B U = A U = B
16 12 15 sylan9bb U V ¬ A = B U A B A B U = A U = B
17 2 4 11 16 ifbothda U V U if A = B A B A B U = A U = B