Database
GRAPH THEORY
Eulerian paths and the Konigsberg Bridge problem
Eulerian paths
eupth2lem1
Next ⟩
eupth2lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
eupth2lem1
Description:
Lemma for
eupth2
.
(Contributed by
Mario Carneiro
, 8-Apr-2015)
Ref
Expression
Assertion
eupth2lem1
⊢
U
∈
V
→
U
∈
if
A
=
B
∅
A
B
↔
A
≠
B
∧
U
=
A
∨
U
=
B
Proof
Step
Hyp
Ref
Expression
1
eleq2
⊢
∅
=
if
A
=
B
∅
A
B
→
U
∈
∅
↔
U
∈
if
A
=
B
∅
A
B
2
1
bibi1d
⊢
∅
=
if
A
=
B
∅
A
B
→
U
∈
∅
↔
A
≠
B
∧
U
=
A
∨
U
=
B
↔
U
∈
if
A
=
B
∅
A
B
↔
A
≠
B
∧
U
=
A
∨
U
=
B
3
eleq2
⊢
A
B
=
if
A
=
B
∅
A
B
→
U
∈
A
B
↔
U
∈
if
A
=
B
∅
A
B
4
3
bibi1d
⊢
A
B
=
if
A
=
B
∅
A
B
→
U
∈
A
B
↔
A
≠
B
∧
U
=
A
∨
U
=
B
↔
U
∈
if
A
=
B
∅
A
B
↔
A
≠
B
∧
U
=
A
∨
U
=
B
5
noel
⊢
¬
U
∈
∅
6
5
a1i
⊢
U
∈
V
∧
A
=
B
→
¬
U
∈
∅
7
simpl
⊢
A
≠
B
∧
U
=
A
∨
U
=
B
→
A
≠
B
8
7
neneqd
⊢
A
≠
B
∧
U
=
A
∨
U
=
B
→
¬
A
=
B
9
simpr
⊢
U
∈
V
∧
A
=
B
→
A
=
B
10
8
9
nsyl3
⊢
U
∈
V
∧
A
=
B
→
¬
A
≠
B
∧
U
=
A
∨
U
=
B
11
6
10
2falsed
⊢
U
∈
V
∧
A
=
B
→
U
∈
∅
↔
A
≠
B
∧
U
=
A
∨
U
=
B
12
elprg
⊢
U
∈
V
→
U
∈
A
B
↔
U
=
A
∨
U
=
B
13
df-ne
⊢
A
≠
B
↔
¬
A
=
B
14
ibar
⊢
A
≠
B
→
U
=
A
∨
U
=
B
↔
A
≠
B
∧
U
=
A
∨
U
=
B
15
13
14
sylbir
⊢
¬
A
=
B
→
U
=
A
∨
U
=
B
↔
A
≠
B
∧
U
=
A
∨
U
=
B
16
12
15
sylan9bb
⊢
U
∈
V
∧
¬
A
=
B
→
U
∈
A
B
↔
A
≠
B
∧
U
=
A
∨
U
=
B
17
2
4
11
16
ifbothda
⊢
U
∈
V
→
U
∈
if
A
=
B
∅
A
B
↔
A
≠
B
∧
U
=
A
∨
U
=
B