Metamath Proof Explorer


Theorem eupth2lem2

Description: Lemma for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015)

Ref Expression
Hypothesis eupth2lem2.1 B V
Assertion eupth2lem2 B C B = U ¬ U if A = B A B U if A = C A C

Proof

Step Hyp Ref Expression
1 eupth2lem2.1 B V
2 eqidd B C B = U B = B
3 2 olcd B C B = U B = A B = B
4 3 biantrud B C B = U A B A B B = A B = B
5 eupth2lem1 B V B if A = B A B A B B = A B = B
6 1 5 ax-mp B if A = B A B A B B = A B = B
7 4 6 bitr4di B C B = U A B B if A = B A B
8 simpr B C B = U B = U
9 8 eleq1d B C B = U B if A = B A B U if A = B A B
10 7 9 bitrd B C B = U A B U if A = B A B
11 10 necon1bbid B C B = U ¬ U if A = B A B A = B
12 simpl B C B = U B C
13 neeq1 B = A B C A C
14 12 13 syl5ibcom B C B = U B = A A C
15 14 pm4.71rd B C B = U B = A A C B = A
16 eqcom A = B B = A
17 ancom B = A A C A C B = A
18 15 16 17 3bitr4g B C B = U A = B B = A A C
19 12 neneqd B C B = U ¬ B = C
20 biorf ¬ B = C B = A B = C B = A
21 19 20 syl B C B = U B = A B = C B = A
22 orcom B = C B = A B = A B = C
23 21 22 bitrdi B C B = U B = A B = A B = C
24 23 anbi1d B C B = U B = A A C B = A B = C A C
25 18 24 bitrd B C B = U A = B B = A B = C A C
26 ancom A C B = A B = C B = A B = C A C
27 25 26 bitr4di B C B = U A = B A C B = A B = C
28 eupth2lem1 B V B if A = C A C A C B = A B = C
29 1 28 ax-mp B if A = C A C A C B = A B = C
30 8 eleq1d B C B = U B if A = C A C U if A = C A C
31 29 30 bitr3id B C B = U A C B = A B = C U if A = C A C
32 11 27 31 3bitrd B C B = U ¬ U if A = B A B U if A = C A C