Metamath Proof Explorer


Theorem eupth2lem3lem1

Description: Lemma for eupth2lem3 . (Contributed by AV, 21-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v V = Vtx G
trlsegvdeg.i I = iEdg G
trlsegvdeg.f φ Fun I
trlsegvdeg.n φ N 0 ..^ F
trlsegvdeg.u φ U V
trlsegvdeg.w φ F Trails G P
trlsegvdeg.vx φ Vtx X = V
trlsegvdeg.vy φ Vtx Y = V
trlsegvdeg.vz φ Vtx Z = V
trlsegvdeg.ix φ iEdg X = I F 0 ..^ N
trlsegvdeg.iy φ iEdg Y = F N I F N
trlsegvdeg.iz φ iEdg Z = I F 0 N
Assertion eupth2lem3lem1 φ VtxDeg X U 0

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v V = Vtx G
2 trlsegvdeg.i I = iEdg G
3 trlsegvdeg.f φ Fun I
4 trlsegvdeg.n φ N 0 ..^ F
5 trlsegvdeg.u φ U V
6 trlsegvdeg.w φ F Trails G P
7 trlsegvdeg.vx φ Vtx X = V
8 trlsegvdeg.vy φ Vtx Y = V
9 trlsegvdeg.vz φ Vtx Z = V
10 trlsegvdeg.ix φ iEdg X = I F 0 ..^ N
11 trlsegvdeg.iy φ iEdg Y = F N I F N
12 trlsegvdeg.iz φ iEdg Z = I F 0 N
13 5 7 eleqtrrd φ U Vtx X
14 13 elfvexd φ X V
15 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem6 φ dom iEdg X Fin
16 eqid Vtx X = Vtx X
17 eqid iEdg X = iEdg X
18 eqid dom iEdg X = dom iEdg X
19 16 17 18 vtxdgfisf X V dom iEdg X Fin VtxDeg X : Vtx X 0
20 14 15 19 syl2anc φ VtxDeg X : Vtx X 0
21 20 13 ffvelrnd φ VtxDeg X U 0