Metamath Proof Explorer


Theorem eupth2lem3lem3

Description: Lemma for eupth2lem3 , formerly part of proof of eupth2lem3 : If a loop { ( PN ) , ( P( N + 1 ) ) } is added to a trail, the degree of the vertices with odd degree remains odd (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 21-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v V = Vtx G
trlsegvdeg.i I = iEdg G
trlsegvdeg.f φ Fun I
trlsegvdeg.n φ N 0 ..^ F
trlsegvdeg.u φ U V
trlsegvdeg.w φ F Trails G P
trlsegvdeg.vx φ Vtx X = V
trlsegvdeg.vy φ Vtx Y = V
trlsegvdeg.vz φ Vtx Z = V
trlsegvdeg.ix φ iEdg X = I F 0 ..^ N
trlsegvdeg.iy φ iEdg Y = F N I F N
trlsegvdeg.iz φ iEdg Z = I F 0 N
eupth2lem3.o φ x V | ¬ 2 VtxDeg X x = if P 0 = P N P 0 P N
eupth2lem3lem3.e φ if- P N = P N + 1 I F N = P N P N P N + 1 I F N
Assertion eupth2lem3lem3 φ P N = P N + 1 ¬ 2 VtxDeg X U + VtxDeg Y U U if P 0 = P N + 1 P 0 P N + 1

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v V = Vtx G
2 trlsegvdeg.i I = iEdg G
3 trlsegvdeg.f φ Fun I
4 trlsegvdeg.n φ N 0 ..^ F
5 trlsegvdeg.u φ U V
6 trlsegvdeg.w φ F Trails G P
7 trlsegvdeg.vx φ Vtx X = V
8 trlsegvdeg.vy φ Vtx Y = V
9 trlsegvdeg.vz φ Vtx Z = V
10 trlsegvdeg.ix φ iEdg X = I F 0 ..^ N
11 trlsegvdeg.iy φ iEdg Y = F N I F N
12 trlsegvdeg.iz φ iEdg Z = I F 0 N
13 eupth2lem3.o φ x V | ¬ 2 VtxDeg X x = if P 0 = P N P 0 P N
14 eupth2lem3lem3.e φ if- P N = P N + 1 I F N = P N P N P N + 1 I F N
15 fveq2 x = U VtxDeg X x = VtxDeg X U
16 15 breq2d x = U 2 VtxDeg X x 2 VtxDeg X U
17 16 notbid x = U ¬ 2 VtxDeg X x ¬ 2 VtxDeg X U
18 17 elrab3 U V U x V | ¬ 2 VtxDeg X x ¬ 2 VtxDeg X U
19 5 18 syl φ U x V | ¬ 2 VtxDeg X x ¬ 2 VtxDeg X U
20 13 eleq2d φ U x V | ¬ 2 VtxDeg X x U if P 0 = P N P 0 P N
21 19 20 bitr3d φ ¬ 2 VtxDeg X U U if P 0 = P N P 0 P N
22 21 adantr φ P N = P N + 1 ¬ 2 VtxDeg X U U if P 0 = P N P 0 P N
23 2z 2
24 23 a1i φ P N = P N + 1 2
25 1 2 3 4 5 6 7 8 9 10 11 12 eupth2lem3lem1 φ VtxDeg X U 0
26 25 nn0zd φ VtxDeg X U
27 26 adantr φ P N = P N + 1 VtxDeg X U
28 1 2 3 4 5 6 7 8 9 10 11 12 eupth2lem3lem2 φ VtxDeg Y U 0
29 28 nn0zd φ VtxDeg Y U
30 29 adantr φ P N = P N + 1 VtxDeg Y U
31 z2even 2 2
32 8 ad2antrr φ P N = P N + 1 U = P N Vtx Y = V
33 fvexd φ P N = P N + 1 U = P N F N V
34 5 ad2antrr φ P N = P N + 1 U = P N U V
35 11 ad2antrr φ P N = P N + 1 U = P N iEdg Y = F N I F N
36 14 adantr φ P N = P N + 1 if- P N = P N + 1 I F N = P N P N P N + 1 I F N
37 ifptru P N = P N + 1 if- P N = P N + 1 I F N = P N P N P N + 1 I F N I F N = P N
38 37 adantl φ P N = P N + 1 if- P N = P N + 1 I F N = P N P N P N + 1 I F N I F N = P N
39 36 38 mpbid φ P N = P N + 1 I F N = P N
40 sneq P N = U P N = U
41 40 eqcoms U = P N P N = U
42 39 41 sylan9eq φ P N = P N + 1 U = P N I F N = U
43 42 opeq2d φ P N = P N + 1 U = P N F N I F N = F N U
44 43 sneqd φ P N = P N + 1 U = P N F N I F N = F N U
45 35 44 eqtrd φ P N = P N + 1 U = P N iEdg Y = F N U
46 32 33 34 45 1loopgrvd2 φ P N = P N + 1 U = P N VtxDeg Y U = 2
47 31 46 breqtrrid φ P N = P N + 1 U = P N 2 VtxDeg Y U
48 z0even 2 0
49 8 ad2antrr φ P N = P N + 1 U P N Vtx Y = V
50 fvexd φ P N = P N + 1 U P N F N V
51 1 2 3 4 5 6 trlsegvdeglem1 φ P N V P N + 1 V
52 51 simpld φ P N V
53 52 ad2antrr φ P N = P N + 1 U P N P N V
54 11 adantr φ P N = P N + 1 iEdg Y = F N I F N
55 39 opeq2d φ P N = P N + 1 F N I F N = F N P N
56 55 sneqd φ P N = P N + 1 F N I F N = F N P N
57 54 56 eqtrd φ P N = P N + 1 iEdg Y = F N P N
58 57 adantr φ P N = P N + 1 U P N iEdg Y = F N P N
59 5 adantr φ P N = P N + 1 U V
60 59 anim1i φ P N = P N + 1 U P N U V U P N
61 eldifsn U V P N U V U P N
62 60 61 sylibr φ P N = P N + 1 U P N U V P N
63 49 50 53 58 62 1loopgrvd0 φ P N = P N + 1 U P N VtxDeg Y U = 0
64 48 63 breqtrrid φ P N = P N + 1 U P N 2 VtxDeg Y U
65 47 64 pm2.61dane φ P N = P N + 1 2 VtxDeg Y U
66 dvdsadd2b 2 VtxDeg X U VtxDeg Y U 2 VtxDeg Y U 2 VtxDeg X U 2 VtxDeg Y U + VtxDeg X U
67 24 27 30 65 66 syl112anc φ P N = P N + 1 2 VtxDeg X U 2 VtxDeg Y U + VtxDeg X U
68 28 nn0cnd φ VtxDeg Y U
69 25 nn0cnd φ VtxDeg X U
70 68 69 addcomd φ VtxDeg Y U + VtxDeg X U = VtxDeg X U + VtxDeg Y U
71 70 breq2d φ 2 VtxDeg Y U + VtxDeg X U 2 VtxDeg X U + VtxDeg Y U
72 71 adantr φ P N = P N + 1 2 VtxDeg Y U + VtxDeg X U 2 VtxDeg X U + VtxDeg Y U
73 67 72 bitrd φ P N = P N + 1 2 VtxDeg X U 2 VtxDeg X U + VtxDeg Y U
74 73 notbid φ P N = P N + 1 ¬ 2 VtxDeg X U ¬ 2 VtxDeg X U + VtxDeg Y U
75 simpr φ P N = P N + 1 P N = P N + 1
76 75 eqeq2d φ P N = P N + 1 P 0 = P N P 0 = P N + 1
77 75 preq2d φ P N = P N + 1 P 0 P N = P 0 P N + 1
78 76 77 ifbieq2d φ P N = P N + 1 if P 0 = P N P 0 P N = if P 0 = P N + 1 P 0 P N + 1
79 78 eleq2d φ P N = P N + 1 U if P 0 = P N P 0 P N U if P 0 = P N + 1 P 0 P N + 1
80 22 74 79 3bitr3d φ P N = P N + 1 ¬ 2 VtxDeg X U + VtxDeg Y U U if P 0 = P N + 1 P 0 P N + 1