Step |
Hyp |
Ref |
Expression |
1 |
|
trlsegvdeg.v |
|
2 |
|
trlsegvdeg.i |
|
3 |
|
trlsegvdeg.f |
|
4 |
|
trlsegvdeg.n |
|
5 |
|
trlsegvdeg.u |
|
6 |
|
trlsegvdeg.w |
|
7 |
|
trlsegvdeg.vx |
|
8 |
|
trlsegvdeg.vy |
|
9 |
|
trlsegvdeg.vz |
|
10 |
|
trlsegvdeg.ix |
|
11 |
|
trlsegvdeg.iy |
|
12 |
|
trlsegvdeg.iz |
|
13 |
|
eupth2lem3.o |
|
14 |
|
eupth2lem3lem3.e |
|
15 |
|
fveq2 |
|
16 |
15
|
breq2d |
|
17 |
16
|
notbid |
|
18 |
17
|
elrab3 |
|
19 |
5 18
|
syl |
|
20 |
13
|
eleq2d |
|
21 |
19 20
|
bitr3d |
|
22 |
21
|
adantr |
|
23 |
|
2z |
|
24 |
23
|
a1i |
|
25 |
1 2 3 4 5 6 7 8 9 10 11 12
|
eupth2lem3lem1 |
|
26 |
25
|
nn0zd |
|
27 |
26
|
adantr |
|
28 |
1 2 3 4 5 6 7 8 9 10 11 12
|
eupth2lem3lem2 |
|
29 |
28
|
nn0zd |
|
30 |
29
|
adantr |
|
31 |
|
z2even |
|
32 |
8
|
ad2antrr |
|
33 |
|
fvexd |
|
34 |
5
|
ad2antrr |
|
35 |
11
|
ad2antrr |
|
36 |
14
|
adantr |
|
37 |
|
ifptru |
|
38 |
37
|
adantl |
|
39 |
36 38
|
mpbid |
|
40 |
|
sneq |
|
41 |
40
|
eqcoms |
|
42 |
39 41
|
sylan9eq |
|
43 |
42
|
opeq2d |
|
44 |
43
|
sneqd |
|
45 |
35 44
|
eqtrd |
|
46 |
32 33 34 45
|
1loopgrvd2 |
|
47 |
31 46
|
breqtrrid |
|
48 |
|
z0even |
|
49 |
8
|
ad2antrr |
|
50 |
|
fvexd |
|
51 |
1 2 3 4 5 6
|
trlsegvdeglem1 |
|
52 |
51
|
simpld |
|
53 |
52
|
ad2antrr |
|
54 |
11
|
adantr |
|
55 |
39
|
opeq2d |
|
56 |
55
|
sneqd |
|
57 |
54 56
|
eqtrd |
|
58 |
57
|
adantr |
|
59 |
5
|
adantr |
|
60 |
59
|
anim1i |
|
61 |
|
eldifsn |
|
62 |
60 61
|
sylibr |
|
63 |
49 50 53 58 62
|
1loopgrvd0 |
|
64 |
48 63
|
breqtrrid |
|
65 |
47 64
|
pm2.61dane |
|
66 |
|
dvdsadd2b |
|
67 |
24 27 30 65 66
|
syl112anc |
|
68 |
28
|
nn0cnd |
|
69 |
25
|
nn0cnd |
|
70 |
68 69
|
addcomd |
|
71 |
70
|
breq2d |
|
72 |
71
|
adantr |
|
73 |
67 72
|
bitrd |
|
74 |
73
|
notbid |
|
75 |
|
simpr |
|
76 |
75
|
eqeq2d |
|
77 |
75
|
preq2d |
|
78 |
76 77
|
ifbieq2d |
|
79 |
78
|
eleq2d |
|
80 |
22 74 79
|
3bitr3d |
|