Metamath Proof Explorer


Theorem eupth2lem3lem6

Description: Formerly part of proof of eupth2lem3 : If an edge (not a loop) is added to a trail, the degree of vertices not being end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). Remark: This seems to be not valid for hyperedges joining more vertices than ( P0 ) and ( PN ) : if there is a third vertex in the edge, and this vertex is already contained in the trail, then the degree of this vertex could be affected by this edge! (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 25-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v V=VtxG
trlsegvdeg.i I=iEdgG
trlsegvdeg.f φFunI
trlsegvdeg.n φN0..^F
trlsegvdeg.u φUV
trlsegvdeg.w φFTrailsGP
trlsegvdeg.vx φVtxX=V
trlsegvdeg.vy φVtxY=V
trlsegvdeg.vz φVtxZ=V
trlsegvdeg.ix φiEdgX=IF0..^N
trlsegvdeg.iy φiEdgY=FNIFN
trlsegvdeg.iz φiEdgZ=IF0N
eupth2lem3.o φxV|¬2VtxDegXx=ifP0=PNP0PN
eupth2lem3.e φIFN=PNPN+1
Assertion eupth2lem3lem6 φPNPN+1UPNUPN+1¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v V=VtxG
2 trlsegvdeg.i I=iEdgG
3 trlsegvdeg.f φFunI
4 trlsegvdeg.n φN0..^F
5 trlsegvdeg.u φUV
6 trlsegvdeg.w φFTrailsGP
7 trlsegvdeg.vx φVtxX=V
8 trlsegvdeg.vy φVtxY=V
9 trlsegvdeg.vz φVtxZ=V
10 trlsegvdeg.ix φiEdgX=IF0..^N
11 trlsegvdeg.iy φiEdgY=FNIFN
12 trlsegvdeg.iz φiEdgZ=IF0N
13 eupth2lem3.o φxV|¬2VtxDegXx=ifP0=PNP0PN
14 eupth2lem3.e φIFN=PNPN+1
15 11 3ad2ant1 φPNPN+1UPNUPN+1iEdgY=FNIFN
16 8 3ad2ant1 φPNPN+1UPNUPN+1VtxY=V
17 fvexd φPNPN+1UPNUPN+1FNV
18 5 3ad2ant1 φPNPN+1UPNUPN+1UV
19 fvexd φPNPN+1UPNUPN+1IFNV
20 simpl UPNUPN+1UPN
21 20 adantl PNPN+1UPNUPN+1UPN
22 simpr UPNUPN+1UPN+1
23 22 adantl PNPN+1UPNUPN+1UPN+1
24 21 23 nelprd PNPN+1UPNUPN+1¬UPNPN+1
25 df-nel UPNPN+1¬UPNPN+1
26 24 25 sylibr PNPN+1UPNUPN+1UPNPN+1
27 neleq2 IFN=PNPN+1UIFNUPNPN+1
28 26 27 imbitrrid IFN=PNPN+1PNPN+1UPNUPN+1UIFN
29 28 expd IFN=PNPN+1PNPN+1UPNUPN+1UIFN
30 14 29 syl φPNPN+1UPNUPN+1UIFN
31 30 3imp φPNPN+1UPNUPN+1UIFN
32 15 16 17 18 19 31 1hevtxdg0 φPNPN+1UPNUPN+1VtxDegYU=0
33 32 oveq2d φPNPN+1UPNUPN+1VtxDegXU+VtxDegYU=VtxDegXU+0
34 1 2 3 4 5 6 7 8 9 10 11 12 eupth2lem3lem1 φVtxDegXU0
35 34 nn0cnd φVtxDegXU
36 35 addridd φVtxDegXU+0=VtxDegXU
37 36 3ad2ant1 φPNPN+1UPNUPN+1VtxDegXU+0=VtxDegXU
38 33 37 eqtrd φPNPN+1UPNUPN+1VtxDegXU+VtxDegYU=VtxDegXU
39 38 breq2d φPNPN+1UPNUPN+12VtxDegXU+VtxDegYU2VtxDegXU
40 39 notbid φPNPN+1UPNUPN+1¬2VtxDegXU+VtxDegYU¬2VtxDegXU
41 fveq2 x=UVtxDegXx=VtxDegXU
42 41 breq2d x=U2VtxDegXx2VtxDegXU
43 42 notbid x=U¬2VtxDegXx¬2VtxDegXU
44 43 elrab3 UVUxV|¬2VtxDegXx¬2VtxDegXU
45 5 44 syl φUxV|¬2VtxDegXx¬2VtxDegXU
46 13 eleq2d φUxV|¬2VtxDegXxUifP0=PNP0PN
47 45 46 bitr3d φ¬2VtxDegXUUifP0=PNP0PN
48 47 3ad2ant1 φPNPN+1UPNUPN+1¬2VtxDegXUUifP0=PNP0PN
49 20 3ad2ant3 φPNPN+1UPNUPN+1UPN
50 22 3ad2ant3 φPNPN+1UPNUPN+1UPN+1
51 49 50 2thd φPNPN+1UPNUPN+1UPNUPN+1
52 neeq1 U=P0UPNP0PN
53 neeq1 U=P0UPN+1P0PN+1
54 52 53 bibi12d U=P0UPNUPN+1P0PNP0PN+1
55 51 54 syl5ibcom φPNPN+1UPNUPN+1U=P0P0PNP0PN+1
56 55 pm5.32rd φPNPN+1UPNUPN+1P0PNU=P0P0PN+1U=P0
57 49 neneqd φPNPN+1UPNUPN+1¬U=PN
58 biorf ¬U=PNU=P0U=PNU=P0
59 57 58 syl φPNPN+1UPNUPN+1U=P0U=PNU=P0
60 orcom U=PNU=P0U=P0U=PN
61 59 60 bitrdi φPNPN+1UPNUPN+1U=P0U=P0U=PN
62 61 anbi2d φPNPN+1UPNUPN+1P0PNU=P0P0PNU=P0U=PN
63 50 neneqd φPNPN+1UPNUPN+1¬U=PN+1
64 biorf ¬U=PN+1U=P0U=PN+1U=P0
65 63 64 syl φPNPN+1UPNUPN+1U=P0U=PN+1U=P0
66 orcom U=PN+1U=P0U=P0U=PN+1
67 65 66 bitrdi φPNPN+1UPNUPN+1U=P0U=P0U=PN+1
68 67 anbi2d φPNPN+1UPNUPN+1P0PN+1U=P0P0PN+1U=P0U=PN+1
69 56 62 68 3bitr3d φPNPN+1UPNUPN+1P0PNU=P0U=PNP0PN+1U=P0U=PN+1
70 eupth2lem1 UVUifP0=PNP0PNP0PNU=P0U=PN
71 18 70 syl φPNPN+1UPNUPN+1UifP0=PNP0PNP0PNU=P0U=PN
72 eupth2lem1 UVUifP0=PN+1P0PN+1P0PN+1U=P0U=PN+1
73 18 72 syl φPNPN+1UPNUPN+1UifP0=PN+1P0PN+1P0PN+1U=P0U=PN+1
74 69 71 73 3bitr4d φPNPN+1UPNUPN+1UifP0=PNP0PNUifP0=PN+1P0PN+1
75 40 48 74 3bitrd φPNPN+1UPNUPN+1¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1