Step |
Hyp |
Ref |
Expression |
1 |
|
trlsegvdeg.v |
|
2 |
|
trlsegvdeg.i |
|
3 |
|
trlsegvdeg.f |
|
4 |
|
trlsegvdeg.n |
|
5 |
|
trlsegvdeg.u |
|
6 |
|
trlsegvdeg.w |
|
7 |
|
trlsegvdeg.vx |
|
8 |
|
trlsegvdeg.vy |
|
9 |
|
trlsegvdeg.vz |
|
10 |
|
trlsegvdeg.ix |
|
11 |
|
trlsegvdeg.iy |
|
12 |
|
trlsegvdeg.iz |
|
13 |
|
eupth2lem3.o |
|
14 |
|
eupth2lem3.e |
|
15 |
11
|
3ad2ant1 |
|
16 |
8
|
3ad2ant1 |
|
17 |
|
fvexd |
|
18 |
5
|
3ad2ant1 |
|
19 |
|
fvexd |
|
20 |
|
simpl |
|
21 |
20
|
adantl |
|
22 |
|
simpr |
|
23 |
22
|
adantl |
|
24 |
21 23
|
nelprd |
|
25 |
|
df-nel |
|
26 |
24 25
|
sylibr |
|
27 |
|
neleq2 |
|
28 |
26 27
|
syl5ibr |
|
29 |
28
|
expd |
|
30 |
14 29
|
syl |
|
31 |
30
|
3imp |
|
32 |
15 16 17 18 19 31
|
1hevtxdg0 |
|
33 |
32
|
oveq2d |
|
34 |
1 2 3 4 5 6 7 8 9 10 11 12
|
eupth2lem3lem1 |
|
35 |
34
|
nn0cnd |
|
36 |
35
|
addid1d |
|
37 |
36
|
3ad2ant1 |
|
38 |
33 37
|
eqtrd |
|
39 |
38
|
breq2d |
|
40 |
39
|
notbid |
|
41 |
|
fveq2 |
|
42 |
41
|
breq2d |
|
43 |
42
|
notbid |
|
44 |
43
|
elrab3 |
|
45 |
5 44
|
syl |
|
46 |
13
|
eleq2d |
|
47 |
45 46
|
bitr3d |
|
48 |
47
|
3ad2ant1 |
|
49 |
20
|
3ad2ant3 |
|
50 |
22
|
3ad2ant3 |
|
51 |
49 50
|
2thd |
|
52 |
|
neeq1 |
|
53 |
|
neeq1 |
|
54 |
52 53
|
bibi12d |
|
55 |
51 54
|
syl5ibcom |
|
56 |
55
|
pm5.32rd |
|
57 |
49
|
neneqd |
|
58 |
|
biorf |
|
59 |
57 58
|
syl |
|
60 |
|
orcom |
|
61 |
59 60
|
bitrdi |
|
62 |
61
|
anbi2d |
|
63 |
50
|
neneqd |
|
64 |
|
biorf |
|
65 |
63 64
|
syl |
|
66 |
|
orcom |
|
67 |
65 66
|
bitrdi |
|
68 |
67
|
anbi2d |
|
69 |
56 62 68
|
3bitr3d |
|
70 |
|
eupth2lem1 |
|
71 |
18 70
|
syl |
|
72 |
|
eupth2lem1 |
|
73 |
18 72
|
syl |
|
74 |
69 71 73
|
3bitr4d |
|
75 |
40 48 74
|
3bitrd |
|