Metamath Proof Explorer


Theorem eupthcl

Description: An Eulerian path has length # ( F ) , which is an integer. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)

Ref Expression
Assertion eupthcl F EulerPaths G P F 0

Proof

Step Hyp Ref Expression
1 eqid iEdg G = iEdg G
2 1 eupthi F EulerPaths G P F Walks G P F : 0 ..^ F 1-1 onto dom iEdg G
3 wlkcl F Walks G P F 0
4 3 adantr F Walks G P F : 0 ..^ F 1-1 onto dom iEdg G F 0
5 2 4 syl F EulerPaths G P F 0