Database  
				GRAPH THEORY  
				Eulerian paths and the Konigsberg Bridge problem  
				Eulerian paths  
				eupthf1o  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   The F  function in an Eulerian path is a bijection from a half-open
       range of nonnegative integers to the set of edges.  (Contributed by Mario Carneiro , 12-Mar-2015)   (Revised by AV , 18-Feb-2021) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypothesis 
						eupths.i  
						  ⊢   I  =    iEdg   ⁡  G            
					 
				
					 
					Assertion 
					eupthf1o  
					   ⊢  F    EulerPaths   ⁡  G     P   →   F  :   0   ..^  F   ⟶  1-1 onto    dom  ⁡  I           
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							eupths.i  
							   ⊢   I  =    iEdg   ⁡  G            
						 
						
							2  
							
								1 
							 
							eupthi  
							    ⊢  F    EulerPaths   ⁡  G     P   →   F   Walks  ⁡  G     P   ∧   F  :   0   ..^  F   ⟶  1-1 onto    dom  ⁡  I              
						 
						
							3  
							
								2 
							 
							simprd  
							    ⊢  F    EulerPaths   ⁡  G     P   →   F  :   0   ..^  F   ⟶  1-1 onto    dom  ⁡  I