Database
GRAPH THEORY
Eulerian paths and the Konigsberg Bridge problem
Eulerian paths
eupthf1o
Metamath Proof Explorer
Description: The F function in an Eulerian path is a bijection from a half-open
range of nonnegative integers to the set of edges. (Contributed by Mario Carneiro , 12-Mar-2015) (Revised by AV , 18-Feb-2021)
Ref
Expression
Hypothesis
eupths.i
⊢ I = iEdg ⁡ G
Assertion
eupthf1o
⊢ F EulerPaths ⁡ G P → F : 0 ..^ F ⟶ 1-1 onto dom ⁡ I
Proof
Step
Hyp
Ref
Expression
1
eupths.i
⊢ I = iEdg ⁡ G
2
1
eupthi
⊢ F EulerPaths ⁡ G P → F Walks ⁡ G P ∧ F : 0 ..^ F ⟶ 1-1 onto dom ⁡ I
3
2
simprd
⊢ F EulerPaths ⁡ G P → F : 0 ..^ F ⟶ 1-1 onto dom ⁡ I