Metamath Proof Explorer


Theorem eupthf1o

Description: The F function in an Eulerian path is a bijection from a half-open range of nonnegative integers to the set of edges. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)

Ref Expression
Hypothesis eupths.i I = iEdg G
Assertion eupthf1o F EulerPaths G P F : 0 ..^ F 1-1 onto dom I

Proof

Step Hyp Ref Expression
1 eupths.i I = iEdg G
2 1 eupthi F EulerPaths G P F Walks G P F : 0 ..^ F 1-1 onto dom I
3 2 simprd F EulerPaths G P F : 0 ..^ F 1-1 onto dom I