Metamath Proof Explorer


Theorem eupthfi

Description: Any graph with an Eulerian path is of finite size, i.e. with a finite number of edges. (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 18-Feb-2021)

Ref Expression
Hypothesis eupths.i I = iEdg G
Assertion eupthfi F EulerPaths G P dom I Fin

Proof

Step Hyp Ref Expression
1 eupths.i I = iEdg G
2 fzofi 0 ..^ F Fin
3 1 eupthf1o F EulerPaths G P F : 0 ..^ F 1-1 onto dom I
4 ovex 0 ..^ F V
5 4 f1oen F : 0 ..^ F 1-1 onto dom I 0 ..^ F dom I
6 ensym 0 ..^ F dom I dom I 0 ..^ F
7 3 5 6 3syl F EulerPaths G P dom I 0 ..^ F
8 enfii 0 ..^ F Fin dom I 0 ..^ F dom I Fin
9 2 7 8 sylancr F EulerPaths G P dom I Fin