Metamath Proof Explorer


Theorem eupthi

Description: Properties of an Eulerian path. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypothesis eupths.i I = iEdg G
Assertion eupthi F EulerPaths G P F Walks G P F : 0 ..^ F 1-1 onto dom I

Proof

Step Hyp Ref Expression
1 eupths.i I = iEdg G
2 1 iseupthf1o F EulerPaths G P F Walks G P F : 0 ..^ F 1-1 onto dom I
3 2 biimpi F EulerPaths G P F Walks G P F : 0 ..^ F 1-1 onto dom I