Database
GRAPH THEORY
Eulerian paths and the Konigsberg Bridge problem
Eulerian paths
eupthi
Metamath Proof Explorer
Description: Properties of an Eulerian path. (Contributed by Mario Carneiro , 12-Mar-2015) (Revised by AV , 18-Feb-2021) (Proof shortened by AV , 30-Oct-2021)
Ref
Expression
Hypothesis
eupths.i
⊢ I = iEdg ⁡ G
Assertion
eupthi
⊢ F EulerPaths ⁡ G P → F Walks ⁡ G P ∧ F : 0 ..^ F ⟶ 1-1 onto dom ⁡ I
Proof
Step
Hyp
Ref
Expression
1
eupths.i
⊢ I = iEdg ⁡ G
2
1
iseupthf1o
⊢ F EulerPaths ⁡ G P ↔ F Walks ⁡ G P ∧ F : 0 ..^ F ⟶ 1-1 onto dom ⁡ I
3
2
biimpi
⊢ F EulerPaths ⁡ G P → F Walks ⁡ G P ∧ F : 0 ..^ F ⟶ 1-1 onto dom ⁡ I