Metamath Proof Explorer


Theorem eupthistrl

Description: An Eulerian path is a trail. (Contributed by Alexander van der Vekens, 24-Nov-2017) (Revised by AV, 18-Feb-2021)

Ref Expression
Assertion eupthistrl F EulerPaths G P F Trails G P

Proof

Step Hyp Ref Expression
1 eqid iEdg G = iEdg G
2 1 iseupth F EulerPaths G P F Trails G P F : 0 ..^ F onto dom iEdg G
3 2 simplbi F EulerPaths G P F Trails G P