Metamath Proof Explorer


Theorem eupthpf

Description: The P function in an Eulerian path is a function from a finite sequence of nonnegative integers to the vertices. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)

Ref Expression
Assertion eupthpf F EulerPaths G P P : 0 F Vtx G

Proof

Step Hyp Ref Expression
1 eupthiswlk F EulerPaths G P F Walks G P
2 eqid Vtx G = Vtx G
3 2 wlkp F Walks G P P : 0 F Vtx G
4 1 3 syl F EulerPaths G P P : 0 F Vtx G