Metamath Proof Explorer


Theorem eupths

Description: The Eulerian paths on the graph G . (Contributed by AV, 18-Feb-2021) (Revised by AV, 29-Oct-2021)

Ref Expression
Hypothesis eupths.i I = iEdg G
Assertion eupths EulerPaths G = f p | f Trails G p f : 0 ..^ f onto dom I

Proof

Step Hyp Ref Expression
1 eupths.i I = iEdg G
2 fveq2 g = G iEdg g = iEdg G
3 2 1 eqtr4di g = G iEdg g = I
4 3 dmeqd g = G dom iEdg g = dom I
5 foeq3 dom iEdg g = dom I f : 0 ..^ f onto dom iEdg g f : 0 ..^ f onto dom I
6 4 5 syl g = G f : 0 ..^ f onto dom iEdg g f : 0 ..^ f onto dom I
7 6 adantl g = G f : 0 ..^ f onto dom iEdg g f : 0 ..^ f onto dom I
8 wksv f p | f Walks G p V
9 trliswlk f Trails G p f Walks G p
10 9 ssopab2i f p | f Trails G p f p | f Walks G p
11 8 10 ssexi f p | f Trails G p V
12 11 a1i f p | f Trails G p V
13 df-eupth EulerPaths = g V f p | f Trails g p f : 0 ..^ f onto dom iEdg g
14 7 12 13 fvmptopab EulerPaths G = f p | f Trails G p f : 0 ..^ f onto dom I
15 14 mptru EulerPaths G = f p | f Trails G p f : 0 ..^ f onto dom I