Metamath Proof Explorer


Theorem eupthseg

Description: The N -th edge in an eulerian path is the edge having P ( N ) and P ( N + 1 ) as endpoints . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021)

Ref Expression
Hypothesis eupths.i I = iEdg G
Assertion eupthseg F EulerPaths G P N 0 ..^ F P N P N + 1 I F N

Proof

Step Hyp Ref Expression
1 eupths.i I = iEdg G
2 1 eupthi F EulerPaths G P F Walks G P F : 0 ..^ F 1-1 onto dom I
3 2 simpld F EulerPaths G P F Walks G P
4 1 wlkvtxeledg F Walks G P k 0 ..^ F P k P k + 1 I F k
5 fveq2 k = N P k = P N
6 fvoveq1 k = N P k + 1 = P N + 1
7 5 6 preq12d k = N P k P k + 1 = P N P N + 1
8 2fveq3 k = N I F k = I F N
9 7 8 sseq12d k = N P k P k + 1 I F k P N P N + 1 I F N
10 9 rspccv k 0 ..^ F P k P k + 1 I F k N 0 ..^ F P N P N + 1 I F N
11 3 4 10 3syl F EulerPaths G P N 0 ..^ F P N P N + 1 I F N
12 11 imp F EulerPaths G P N 0 ..^ F P N P N + 1 I F N