Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
eusn
Next ⟩
rabsnt
Metamath Proof Explorer
Ascii
Unicode
Theorem
eusn
Description:
Two ways to express "
A
is a singleton".
(Contributed by
NM
, 30-Oct-2010)
Ref
Expression
Assertion
eusn
⊢
∃!
x
x
∈
A
↔
∃
x
A
=
x
Proof
Step
Hyp
Ref
Expression
1
euabsn
⊢
∃!
x
x
∈
A
↔
∃
x
x
|
x
∈
A
=
x
2
abid2
⊢
x
|
x
∈
A
=
A
3
2
eqeq1i
⊢
x
|
x
∈
A
=
x
↔
A
=
x
4
3
exbii
⊢
∃
x
x
|
x
∈
A
=
x
↔
∃
x
A
=
x
5
1
4
bitri
⊢
∃!
x
x
∈
A
↔
∃
x
A
=
x