Metamath Proof Explorer


Theorem eusv1

Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by NM, 14-Oct-2010)

Ref Expression
Assertion eusv1 ∃! y x y = A y x y = A

Proof

Step Hyp Ref Expression
1 sp x y = A y = A
2 sp x z = A z = A
3 eqtr3 y = A z = A y = z
4 1 2 3 syl2an x y = A x z = A y = z
5 4 gen2 y z x y = A x z = A y = z
6 eqeq1 y = z y = A z = A
7 6 albidv y = z x y = A x z = A
8 7 eu4 ∃! y x y = A y x y = A y z x y = A x z = A y = z
9 5 8 mpbiran2 ∃! y x y = A y x y = A