Metamath Proof Explorer


Theorem eusv2

Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by NM, 15-Oct-2010) (Proof shortened by Mario Carneiro, 18-Nov-2016)

Ref Expression
Hypothesis eusv2.1 A V
Assertion eusv2 ∃! y x y = A ∃! y x y = A

Proof

Step Hyp Ref Expression
1 eusv2.1 A V
2 1 eusv2nf ∃! y x y = A _ x A
3 eusvnfb ∃! y x y = A _ x A A V
4 1 3 mpbiran2 ∃! y x y = A _ x A
5 2 4 bitr4i ∃! y x y = A ∃! y x y = A