Metamath Proof Explorer


Theorem eusv4

Description: Two ways to express single-valuedness of a class expression B ( y ) . (Contributed by NM, 27-Oct-2010)

Ref Expression
Hypothesis eusv4.1 B V
Assertion eusv4 ∃! x y A x = B ∃! x y A x = B

Proof

Step Hyp Ref Expression
1 eusv4.1 B V
2 reusv2lem3 y A B V ∃! x y A x = B ∃! x y A x = B
3 1 a1i y A B V
4 2 3 mprg ∃! x y A x = B ∃! x y A x = B