Metamath Proof Explorer


Theorem eusvnfb

Description: Two ways to say that A ( x ) is a set expression that does not depend on x . (Contributed by Mario Carneiro, 18-Nov-2016)

Ref Expression
Assertion eusvnfb ∃! y x y = A _ x A A V

Proof

Step Hyp Ref Expression
1 eusvnf ∃! y x y = A _ x A
2 euex ∃! y x y = A y x y = A
3 eqvisset y = A A V
4 3 sps x y = A A V
5 4 exlimiv y x y = A A V
6 2 5 syl ∃! y x y = A A V
7 1 6 jca ∃! y x y = A _ x A A V
8 isset A V y y = A
9 nfcvd _ x A _ x y
10 id _ x A _ x A
11 9 10 nfeqd _ x A x y = A
12 11 nf5rd _ x A y = A x y = A
13 12 eximdv _ x A y y = A y x y = A
14 8 13 syl5bi _ x A A V y x y = A
15 14 imp _ x A A V y x y = A
16 eusv1 ∃! y x y = A y x y = A
17 15 16 sylibr _ x A A V ∃! y x y = A
18 7 17 impbii ∃! y x y = A _ x A A V