Metamath Proof Explorer


Theorem eusvobj1

Description: Specify the same object in two ways when class B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016)

Ref Expression
Hypothesis eusvobj1.1 B V
Assertion eusvobj1 ∃! x y A x = B ι x | y A x = B = ι x | y A x = B

Proof

Step Hyp Ref Expression
1 eusvobj1.1 B V
2 nfeu1 x ∃! x y A x = B
3 1 eusvobj2 ∃! x y A x = B y A x = B y A x = B
4 2 3 alrimi ∃! x y A x = B x y A x = B y A x = B
5 iotabi x y A x = B y A x = B ι x | y A x = B = ι x | y A x = B
6 4 5 syl ∃! x y A x = B ι x | y A x = B = ι x | y A x = B