Metamath Proof Explorer


Theorem eusvobj2

Description: Specify the same property in two ways when class B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis eusvobj1.1 B V
Assertion eusvobj2 ∃! x y A x = B y A x = B y A x = B

Proof

Step Hyp Ref Expression
1 eusvobj1.1 B V
2 euabsn2 ∃! x y A x = B z x | y A x = B = z
3 eleq2 x | y A x = B = z x x | y A x = B x z
4 abid x x | y A x = B y A x = B
5 velsn x z x = z
6 3 4 5 3bitr3g x | y A x = B = z y A x = B x = z
7 nfre1 y y A x = B
8 7 nfab _ y x | y A x = B
9 8 nfeq1 y x | y A x = B = z
10 1 elabrex y A B x | y A x = B
11 eleq2 x | y A x = B = z B x | y A x = B B z
12 1 elsn B z B = z
13 eqcom B = z z = B
14 12 13 bitri B z z = B
15 11 14 bitrdi x | y A x = B = z B x | y A x = B z = B
16 10 15 syl5ib x | y A x = B = z y A z = B
17 9 16 ralrimi x | y A x = B = z y A z = B
18 eqeq1 x = z x = B z = B
19 18 ralbidv x = z y A x = B y A z = B
20 17 19 syl5ibrcom x | y A x = B = z x = z y A x = B
21 6 20 sylbid x | y A x = B = z y A x = B y A x = B
22 21 exlimiv z x | y A x = B = z y A x = B y A x = B
23 2 22 sylbi ∃! x y A x = B y A x = B y A x = B
24 euex ∃! x y A x = B x y A x = B
25 rexn0 y A x = B A
26 25 exlimiv x y A x = B A
27 r19.2z A y A x = B y A x = B
28 27 ex A y A x = B y A x = B
29 24 26 28 3syl ∃! x y A x = B y A x = B y A x = B
30 23 29 impbid ∃! x y A x = B y A x = B y A x = B