Metamath Proof Explorer


Theorem euxfr

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker euxfrw when possible. (Contributed by NM, 14-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses euxfr.1 A V
euxfr.2 ∃! y x = A
euxfr.3 x = A φ ψ
Assertion euxfr ∃! x φ ∃! y ψ

Proof

Step Hyp Ref Expression
1 euxfr.1 A V
2 euxfr.2 ∃! y x = A
3 euxfr.3 x = A φ ψ
4 euex ∃! y x = A y x = A
5 2 4 ax-mp y x = A
6 5 biantrur φ y x = A φ
7 19.41v y x = A φ y x = A φ
8 3 pm5.32i x = A φ x = A ψ
9 8 exbii y x = A φ y x = A ψ
10 6 7 9 3bitr2i φ y x = A ψ
11 10 eubii ∃! x φ ∃! x y x = A ψ
12 2 eumoi * y x = A
13 1 12 euxfr2 ∃! x y x = A ψ ∃! y ψ
14 11 13 bitri ∃! x φ ∃! y ψ