Metamath Proof Explorer


Theorem euxfr2

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker euxfr2w when possible. (Contributed by NM, 14-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses euxfr2.1 A V
euxfr2.2 * y x = A
Assertion euxfr2 ∃! x y x = A φ ∃! y φ

Proof

Step Hyp Ref Expression
1 euxfr2.1 A V
2 euxfr2.2 * y x = A
3 2euswap x * y x = A φ ∃! x y x = A φ ∃! y x x = A φ
4 2 moani * y φ x = A
5 ancom φ x = A x = A φ
6 5 mobii * y φ x = A * y x = A φ
7 4 6 mpbi * y x = A φ
8 3 7 mpg ∃! x y x = A φ ∃! y x x = A φ
9 2euswap y * x x = A φ ∃! y x x = A φ ∃! x y x = A φ
10 moeq * x x = A
11 10 moani * x φ x = A
12 5 mobii * x φ x = A * x x = A φ
13 11 12 mpbi * x x = A φ
14 9 13 mpg ∃! y x x = A φ ∃! x y x = A φ
15 8 14 impbii ∃! x y x = A φ ∃! y x x = A φ
16 biidd x = A φ φ
17 1 16 ceqsexv x x = A φ φ
18 17 eubii ∃! y x x = A φ ∃! y φ
19 15 18 bitri ∃! x y x = A φ ∃! y φ