Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Even and odd numbers
even2n
Next ⟩
oddm1even
Metamath Proof Explorer
Ascii
Unicode
Theorem
even2n
Description:
An integer is even iff it is twice another integer.
(Contributed by
AV
, 25-Jun-2020)
Ref
Expression
Assertion
even2n
⊢
2
∥
N
↔
∃
n
∈
ℤ
2
⁢
n
=
N
Proof
Step
Hyp
Ref
Expression
1
evenelz
⊢
2
∥
N
→
N
∈
ℤ
2
2z
⊢
2
∈
ℤ
3
2
a1i
⊢
n
∈
ℤ
→
2
∈
ℤ
4
id
⊢
n
∈
ℤ
→
n
∈
ℤ
5
3
4
zmulcld
⊢
n
∈
ℤ
→
2
⁢
n
∈
ℤ
6
5
adantr
⊢
n
∈
ℤ
∧
2
⁢
n
=
N
→
2
⁢
n
∈
ℤ
7
eleq1
⊢
2
⁢
n
=
N
→
2
⁢
n
∈
ℤ
↔
N
∈
ℤ
8
7
adantl
⊢
n
∈
ℤ
∧
2
⁢
n
=
N
→
2
⁢
n
∈
ℤ
↔
N
∈
ℤ
9
6
8
mpbid
⊢
n
∈
ℤ
∧
2
⁢
n
=
N
→
N
∈
ℤ
10
9
rexlimiva
⊢
∃
n
∈
ℤ
2
⁢
n
=
N
→
N
∈
ℤ
11
divides
⊢
2
∈
ℤ
∧
N
∈
ℤ
→
2
∥
N
↔
∃
n
∈
ℤ
n
⋅
2
=
N
12
zcn
⊢
n
∈
ℤ
→
n
∈
ℂ
13
2cnd
⊢
n
∈
ℤ
→
2
∈
ℂ
14
12
13
mulcomd
⊢
n
∈
ℤ
→
n
⋅
2
=
2
⁢
n
15
14
eqeq1d
⊢
n
∈
ℤ
→
n
⋅
2
=
N
↔
2
⁢
n
=
N
16
15
rexbiia
⊢
∃
n
∈
ℤ
n
⋅
2
=
N
↔
∃
n
∈
ℤ
2
⁢
n
=
N
17
11
16
bitrdi
⊢
2
∈
ℤ
∧
N
∈
ℤ
→
2
∥
N
↔
∃
n
∈
ℤ
2
⁢
n
=
N
18
2
17
mpan
⊢
N
∈
ℤ
→
2
∥
N
↔
∃
n
∈
ℤ
2
⁢
n
=
N
19
1
10
18
pm5.21nii
⊢
2
∥
N
↔
∃
n
∈
ℤ
2
⁢
n
=
N