Metamath Proof Explorer


Theorem even3prm2

Description: If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021)

Ref Expression
Assertion even3prm2 N Even P Q R N = P + Q + R P = 2 Q = 2 R = 2

Proof

Step Hyp Ref Expression
1 olc R = 2 P = 2 Q = 2 R = 2
2 1 a1d R = 2 N Even P Q R N = P + Q + R P = 2 Q = 2 R = 2
3 df-ne R 2 ¬ R = 2
4 eldifsn R 2 R R 2
5 oddprmALTV R 2 R Odd
6 emoo N Even R Odd N R Odd
7 6 expcom R Odd N Even N R Odd
8 5 7 syl R 2 N Even N R Odd
9 4 8 sylbir R R 2 N Even N R Odd
10 9 ex R R 2 N Even N R Odd
11 3 10 syl5bir R ¬ R = 2 N Even N R Odd
12 11 com23 R N Even ¬ R = 2 N R Odd
13 12 3ad2ant3 P Q R N Even ¬ R = 2 N R Odd
14 13 impcom N Even P Q R ¬ R = 2 N R Odd
15 14 3adant3 N Even P Q R N = P + Q + R ¬ R = 2 N R Odd
16 15 impcom ¬ R = 2 N Even P Q R N = P + Q + R N R Odd
17 3simpa P Q R P Q
18 17 3ad2ant2 N Even P Q R N = P + Q + R P Q
19 18 adantl ¬ R = 2 N Even P Q R N = P + Q + R P Q
20 eqcom N = P + Q + R P + Q + R = N
21 evenz N Even N
22 21 zcnd N Even N
23 22 adantr N Even P Q R N
24 prmz R R
25 24 zcnd R R
26 25 3ad2ant3 P Q R R
27 26 adantl N Even P Q R R
28 prmz P P
29 prmz Q Q
30 zaddcl P Q P + Q
31 28 29 30 syl2an P Q P + Q
32 31 zcnd P Q P + Q
33 32 3adant3 P Q R P + Q
34 33 adantl N Even P Q R P + Q
35 23 27 34 subadd2d N Even P Q R N R = P + Q P + Q + R = N
36 35 biimprd N Even P Q R P + Q + R = N N R = P + Q
37 20 36 syl5bi N Even P Q R N = P + Q + R N R = P + Q
38 37 3impia N Even P Q R N = P + Q + R N R = P + Q
39 38 adantl ¬ R = 2 N Even P Q R N = P + Q + R N R = P + Q
40 odd2prm2 N R Odd P Q N R = P + Q P = 2 Q = 2
41 16 19 39 40 syl3anc ¬ R = 2 N Even P Q R N = P + Q + R P = 2 Q = 2
42 41 orcd ¬ R = 2 N Even P Q R N = P + Q + R P = 2 Q = 2 R = 2
43 42 ex ¬ R = 2 N Even P Q R N = P + Q + R P = 2 Q = 2 R = 2
44 2 43 pm2.61i N Even P Q R N = P + Q + R P = 2 Q = 2 R = 2
45 df-3or P = 2 Q = 2 R = 2 P = 2 Q = 2 R = 2
46 44 45 sylibr N Even P Q R N = P + Q + R P = 2 Q = 2 R = 2