Metamath Proof Explorer


Theorem evengpoap3

Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of an odd Goldbach number and 3. (Contributed by AV, 27-Jul-2020) (Proof shortened by AV, 15-Sep-2021)

Ref Expression
Assertion evengpoap3 m Odd 7 < m m GoldbachOdd N 12 N Even o GoldbachOdd N = o + 3

Proof

Step Hyp Ref Expression
1 3odd 3 Odd
2 1 a1i N 12 3 Odd
3 2 anim1i N 12 N Even 3 Odd N Even
4 3 ancomd N 12 N Even N Even 3 Odd
5 emoo N Even 3 Odd N 3 Odd
6 4 5 syl N 12 N Even N 3 Odd
7 breq2 m = N 3 7 < m 7 < N 3
8 eleq1 m = N 3 m GoldbachOdd N 3 GoldbachOdd
9 7 8 imbi12d m = N 3 7 < m m GoldbachOdd 7 < N 3 N 3 GoldbachOdd
10 9 adantl N 12 N Even m = N 3 7 < m m GoldbachOdd 7 < N 3 N 3 GoldbachOdd
11 6 10 rspcdv N 12 N Even m Odd 7 < m m GoldbachOdd 7 < N 3 N 3 GoldbachOdd
12 eluz2 N 12 12 N 12 N
13 7p3e10 7 + 3 = 10
14 1nn0 1 0
15 0nn0 0 0
16 2nn 2
17 2pos 0 < 2
18 14 15 16 17 declt 10 < 12
19 13 18 eqbrtri 7 + 3 < 12
20 7re 7
21 3re 3
22 20 21 readdcli 7 + 3
23 2nn0 2 0
24 14 23 deccl 12 0
25 24 nn0rei 12
26 zre N N
27 ltletr 7 + 3 12 N 7 + 3 < 12 12 N 7 + 3 < N
28 22 25 26 27 mp3an12i N 7 + 3 < 12 12 N 7 + 3 < N
29 19 28 mpani N 12 N 7 + 3 < N
30 29 imp N 12 N 7 + 3 < N
31 30 3adant1 12 N 12 N 7 + 3 < N
32 20 a1i 12 N 12 N 7
33 21 a1i 12 N 12 N 3
34 26 3ad2ant2 12 N 12 N N
35 32 33 34 ltaddsubd 12 N 12 N 7 + 3 < N 7 < N 3
36 31 35 mpbid 12 N 12 N 7 < N 3
37 12 36 sylbi N 12 7 < N 3
38 37 adantr N 12 N Even 7 < N 3
39 simpr N 12 N Even N 3 GoldbachOdd N 3 GoldbachOdd
40 oveq1 o = N 3 o + 3 = N - 3 + 3
41 40 eqeq2d o = N 3 N = o + 3 N = N - 3 + 3
42 41 adantl N 12 N Even N 3 GoldbachOdd o = N 3 N = o + 3 N = N - 3 + 3
43 eluzelcn N 12 N
44 3cn 3
45 43 44 jctir N 12 N 3
46 45 adantr N 12 N Even N 3
47 46 adantr N 12 N Even N 3 GoldbachOdd N 3
48 npcan N 3 N - 3 + 3 = N
49 48 eqcomd N 3 N = N - 3 + 3
50 47 49 syl N 12 N Even N 3 GoldbachOdd N = N - 3 + 3
51 39 42 50 rspcedvd N 12 N Even N 3 GoldbachOdd o GoldbachOdd N = o + 3
52 51 ex N 12 N Even N 3 GoldbachOdd o GoldbachOdd N = o + 3
53 38 52 embantd N 12 N Even 7 < N 3 N 3 GoldbachOdd o GoldbachOdd N = o + 3
54 11 53 syldc m Odd 7 < m m GoldbachOdd N 12 N Even o GoldbachOdd N = o + 3