Metamath Proof Explorer


Theorem evengpop3

Description: If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of an odd Goldbach number and 3. (Contributed by AV, 24-Jul-2020)

Ref Expression
Assertion evengpop3 m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N = o + 3

Proof

Step Hyp Ref Expression
1 3odd 3 Odd
2 1 a1i N 9 3 Odd
3 2 anim1i N 9 N Even 3 Odd N Even
4 3 ancomd N 9 N Even N Even 3 Odd
5 emoo N Even 3 Odd N 3 Odd
6 4 5 syl N 9 N Even N 3 Odd
7 breq2 m = N 3 5 < m 5 < N 3
8 eleq1 m = N 3 m GoldbachOddW N 3 GoldbachOddW
9 7 8 imbi12d m = N 3 5 < m m GoldbachOddW 5 < N 3 N 3 GoldbachOddW
10 9 adantl N 9 N Even m = N 3 5 < m m GoldbachOddW 5 < N 3 N 3 GoldbachOddW
11 6 10 rspcdv N 9 N Even m Odd 5 < m m GoldbachOddW 5 < N 3 N 3 GoldbachOddW
12 eluz2 N 9 9 N 9 N
13 5p3e8 5 + 3 = 8
14 8p1e9 8 + 1 = 9
15 9cn 9
16 ax-1cn 1
17 8cn 8
18 15 16 17 subadd2i 9 1 = 8 8 + 1 = 9
19 14 18 mpbir 9 1 = 8
20 13 19 eqtr4i 5 + 3 = 9 1
21 zlem1lt 9 N 9 N 9 1 < N
22 21 biimp3a 9 N 9 N 9 1 < N
23 20 22 eqbrtrid 9 N 9 N 5 + 3 < N
24 5re 5
25 24 a1i N 5
26 3re 3
27 26 a1i N 3
28 zre N N
29 25 27 28 3jca N 5 3 N
30 29 3ad2ant2 9 N 9 N 5 3 N
31 ltaddsub 5 3 N 5 + 3 < N 5 < N 3
32 30 31 syl 9 N 9 N 5 + 3 < N 5 < N 3
33 23 32 mpbid 9 N 9 N 5 < N 3
34 12 33 sylbi N 9 5 < N 3
35 34 adantr N 9 N Even 5 < N 3
36 simpr N 9 N Even N 3 GoldbachOddW N 3 GoldbachOddW
37 oveq1 o = N 3 o + 3 = N - 3 + 3
38 37 eqeq2d o = N 3 N = o + 3 N = N - 3 + 3
39 38 adantl N 9 N Even N 3 GoldbachOddW o = N 3 N = o + 3 N = N - 3 + 3
40 eluzelcn N 9 N
41 3cn 3
42 41 a1i N 9 3
43 40 42 jca N 9 N 3
44 43 adantr N 9 N Even N 3
45 44 adantr N 9 N Even N 3 GoldbachOddW N 3
46 npcan N 3 N - 3 + 3 = N
47 46 eqcomd N 3 N = N - 3 + 3
48 45 47 syl N 9 N Even N 3 GoldbachOddW N = N - 3 + 3
49 36 39 48 rspcedvd N 9 N Even N 3 GoldbachOddW o GoldbachOddW N = o + 3
50 49 ex N 9 N Even N 3 GoldbachOddW o GoldbachOddW N = o + 3
51 35 50 embantd N 9 N Even 5 < N 3 N 3 GoldbachOddW o GoldbachOddW N = o + 3
52 11 51 syldc m Odd 5 < m m GoldbachOddW N 9 N Even o GoldbachOddW N = o + 3