Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Even and odd numbers
Definitions and basic properties
evenm1odd
Next ⟩
evenp1odd
Metamath Proof Explorer
Ascii
Unicode
Theorem
evenm1odd
Description:
The predecessor of an even number is odd.
(Contributed by
AV
, 16-Jun-2020)
Ref
Expression
Assertion
evenm1odd
⊢
Z
∈
Even
→
Z
−
1
∈
Odd
Proof
Step
Hyp
Ref
Expression
1
evenz
⊢
Z
∈
Even
→
Z
∈
ℤ
2
peano2zm
⊢
Z
∈
ℤ
→
Z
−
1
∈
ℤ
3
1
2
syl
⊢
Z
∈
Even
→
Z
−
1
∈
ℤ
4
iseven
⊢
Z
∈
Even
↔
Z
∈
ℤ
∧
Z
2
∈
ℤ
5
zcn
⊢
Z
∈
ℤ
→
Z
∈
ℂ
6
npcan1
⊢
Z
∈
ℂ
→
Z
-
1
+
1
=
Z
7
5
6
syl
⊢
Z
∈
ℤ
→
Z
-
1
+
1
=
Z
8
7
eqcomd
⊢
Z
∈
ℤ
→
Z
=
Z
-
1
+
1
9
8
oveq1d
⊢
Z
∈
ℤ
→
Z
2
=
Z
-
1
+
1
2
10
9
eleq1d
⊢
Z
∈
ℤ
→
Z
2
∈
ℤ
↔
Z
-
1
+
1
2
∈
ℤ
11
10
biimpa
⊢
Z
∈
ℤ
∧
Z
2
∈
ℤ
→
Z
-
1
+
1
2
∈
ℤ
12
4
11
sylbi
⊢
Z
∈
Even
→
Z
-
1
+
1
2
∈
ℤ
13
isodd
⊢
Z
−
1
∈
Odd
↔
Z
−
1
∈
ℤ
∧
Z
-
1
+
1
2
∈
ℤ
14
3
12
13
sylanbrc
⊢
Z
∈
Even
→
Z
−
1
∈
Odd