Metamath Proof Explorer


Theorem evennn02n

Description: A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Assertion evennn02n N 0 2 N n 0 2 n = N

Proof

Step Hyp Ref Expression
1 eleq1 2 n = N 2 n 0 N 0
2 simpr 2 n 0 n n
3 2rp 2 +
4 3 a1i 2 n 0 n 2 +
5 zre n n
6 5 adantl 2 n 0 n n
7 nn0ge0 2 n 0 0 2 n
8 7 adantr 2 n 0 n 0 2 n
9 4 6 8 prodge0rd 2 n 0 n 0 n
10 elnn0z n 0 n 0 n
11 2 9 10 sylanbrc 2 n 0 n n 0
12 11 ex 2 n 0 n n 0
13 1 12 syl6bir 2 n = N N 0 n n 0
14 13 com13 n N 0 2 n = N n 0
15 14 impcom N 0 n 2 n = N n 0
16 15 pm4.71rd N 0 n 2 n = N n 0 2 n = N
17 16 bicomd N 0 n n 0 2 n = N 2 n = N
18 17 rexbidva N 0 n n 0 2 n = N n 2 n = N
19 nn0ssz 0
20 rexss 0 n 0 2 n = N n n 0 2 n = N
21 19 20 mp1i N 0 n 0 2 n = N n n 0 2 n = N
22 even2n 2 N n 2 n = N
23 22 a1i N 0 2 N n 2 n = N
24 18 21 23 3bitr4rd N 0 2 N n 0 2 n = N