Metamath Proof Explorer


Theorem evennn2n

Description: A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021)

Ref Expression
Assertion evennn2n N 2 N n 2 n = N

Proof

Step Hyp Ref Expression
1 eleq1 2 n = N 2 n N
2 simpr 2 n n n
3 2re 2
4 3 a1i 2 n n 2
5 zre n n
6 5 adantl 2 n n n
7 0le2 0 2
8 7 a1i 2 n n 0 2
9 nngt0 2 n 0 < 2 n
10 9 adantr 2 n n 0 < 2 n
11 prodgt0 2 n 0 2 0 < 2 n 0 < n
12 4 6 8 10 11 syl22anc 2 n n 0 < n
13 elnnz n n 0 < n
14 2 12 13 sylanbrc 2 n n n
15 14 ex 2 n n n
16 1 15 syl6bir 2 n = N N n n
17 16 com13 n N 2 n = N n
18 17 impcom N n 2 n = N n
19 18 pm4.71rd N n 2 n = N n 2 n = N
20 19 bicomd N n n 2 n = N 2 n = N
21 20 rexbidva N n n 2 n = N n 2 n = N
22 nnssz
23 rexss n 2 n = N n n 2 n = N
24 22 23 mp1i N n 2 n = N n n 2 n = N
25 even2n 2 N n 2 n = N
26 25 a1i N 2 N n 2 n = N
27 21 24 26 3bitr4rd N 2 N n 2 n = N